{"title":"Existence and Optimal Controls for Generalized Riemann–Liouville Fractional Sobolev-Type Stochastic Integrodifferential Equations of Order \nϑ∈(1,2)","authors":"M. Johnson, V. Vijayakumar, Kiwoon Kwon","doi":"10.1002/mma.10662","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This manuscript addresses the optimal control of generalized Riemann–Liouville fractional (Hilfer fractional) Sobolev-type stochastic differential equations of order \n<span></span><math>\n <semantics>\n <mrow>\n <mi>ϑ</mi>\n <mo>∈</mo>\n <mspace></mspace>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\vartheta \\in \\kern0.3em \\left(1,2\\right) $$</annotation>\n </semantics></math> in separable Hilbert spaces. First, the existence of mild solutions for the system is established using the cosine family of operators and the Leray–Schauder fixed point theorem. Then, the existence of optimal control is demonstrated through Balder's theorem. Finally, an example is provided to illustrate the results.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 5","pages":"6165-6179"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10662","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This manuscript addresses the optimal control of generalized Riemann–Liouville fractional (Hilfer fractional) Sobolev-type stochastic differential equations of order
in separable Hilbert spaces. First, the existence of mild solutions for the system is established using the cosine family of operators and the Leray–Schauder fixed point theorem. Then, the existence of optimal control is demonstrated through Balder's theorem. Finally, an example is provided to illustrate the results.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.