{"title":"Dynamic Pattern Matching on Encrypted Data With Forward and Backward Security","authors":"Xiaolu Chu, Ke Cheng, Anxiao Song, Jiaxuan Fu","doi":"10.1049/ise2/5523834","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Pattern matching is widely used in applications such as genomic data query analysis, network intrusion detection, and deep packet inspection (DPI). Performing pattern matching on plaintext data is straightforward, but the need to protect the security of analyzed data and analyzed patterns can significantly complicate the process. Due to the privacy security issues of data and patterns, researchers begin to explore pattern matching on encrypted data. However, existing solutions are typically built on static pattern matching methods, lacking dynamism, namely, the inability to perform addition or deletion operations on the analyzed data. This lack of flexibility might hinder the adaptability and effectiveness of pattern matching on encrypted data in the real-world scenarios. In this paper, we design a dynamic pattern matching scheme on encrypted data with forward and backward security, which introduces much-needed dynamism. Our scheme is able to implement the addition operation and the deletion operation on the encrypted data without affecting the security of the original pattern matching scheme. Specifically, we design secure addition and deletion algorithms based on fragmentation data structures, which are compatible with the static pattern matching scheme. Moreover, we make significant improvements to the key generation algorithm, the encryption algorithm, and the match algorithm of the static scheme to ensure forward and backward security. Theoretical analysis proves that our scheme satisfies forward and backward security while ensuring the nonfalsifiability of encrypted data. The experimental results show that our scheme has a slight increase in time cost compared to the static pattern matching scheme, demonstrating its practicality and effectiveness in dynamic scenarios.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2025 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2/5523834","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2/5523834","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Pattern matching is widely used in applications such as genomic data query analysis, network intrusion detection, and deep packet inspection (DPI). Performing pattern matching on plaintext data is straightforward, but the need to protect the security of analyzed data and analyzed patterns can significantly complicate the process. Due to the privacy security issues of data and patterns, researchers begin to explore pattern matching on encrypted data. However, existing solutions are typically built on static pattern matching methods, lacking dynamism, namely, the inability to perform addition or deletion operations on the analyzed data. This lack of flexibility might hinder the adaptability and effectiveness of pattern matching on encrypted data in the real-world scenarios. In this paper, we design a dynamic pattern matching scheme on encrypted data with forward and backward security, which introduces much-needed dynamism. Our scheme is able to implement the addition operation and the deletion operation on the encrypted data without affecting the security of the original pattern matching scheme. Specifically, we design secure addition and deletion algorithms based on fragmentation data structures, which are compatible with the static pattern matching scheme. Moreover, we make significant improvements to the key generation algorithm, the encryption algorithm, and the match algorithm of the static scheme to ensure forward and backward security. Theoretical analysis proves that our scheme satisfies forward and backward security while ensuring the nonfalsifiability of encrypted data. The experimental results show that our scheme has a slight increase in time cost compared to the static pattern matching scheme, demonstrating its practicality and effectiveness in dynamic scenarios.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf