Green and Sustainable Extraction of Bioactive Compounds from Centella asiatica leaves using Microwave Pretreatment and Ultrasonication: Kinetics, Process Optimization, and Biological Activity
{"title":"Green and Sustainable Extraction of Bioactive Compounds from Centella asiatica leaves using Microwave Pretreatment and Ultrasonication: Kinetics, Process Optimization, and Biological Activity","authors":"Sarthak Nakra, Soubhagya Tripathy, Prem Prakash Srivastav","doi":"10.1007/s11483-025-09948-9","DOIUrl":null,"url":null,"abstract":"<div><p><i>Centella asiatica</i> is a medicinal plant rich in bioactive compounds with potential health benefits. However, its processing conditions significantly influence the retention of these compounds. Therefore, this study investigated the effect of microwave pretreatment on the drying, extraction, and encapsulation of <i>Centella asiatica</i> bioactive compounds. Leaves were subjected to steam and microwave blanching for 30, 45, and 60 s, followed by drying at 30, 40, and 50 °C. Drying kinetics were analyzed using different mathematical models. Ultrasound-assisted extraction was employed to enhance bioactive compound yield, with optimization conducted using a Central Composite Rotatable Design (CCRD). The independent variables included sonication time (15–30 min), solvent-to-solid ratio (10:1–30:1), and solvent concentration (60–90%). The optimized extract was encapsulated using aloe vera mucilage with varying concentrations of maltodextrin and gum acacia, and freeze-dried powders were evaluated for encapsulation efficiency and physicochemical properties. Microwave blanching resulted in a higher drying rate compared to steam blanching and control samples. Blanching for 45 s followed by drying at 50 °C effectively retained bioactive compounds, making it the optimal condition for extraction. The best extraction conditions were identified as 30 min sonication, a solvent-to-solid ratio of 29:1, and a solvent concentration of 90%. The second-order polynomial model fitted well with the experimental data, and multiple regression and ANOVA confirmed the model's reliability. Among the encapsulation formulations, S4 exhibited the highest encapsulation efficiency and superior physicochemical properties. This study highlights the effectiveness of microwave blanching, optimized ultrasound-assisted extraction, and aloe vera-based encapsulation for preserving <i>Centella asiatica</i> bioactive compounds. These findings provide a foundation for industrial-scale processing, ensuring enhanced product stability and quality.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09948-9","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Centella asiatica is a medicinal plant rich in bioactive compounds with potential health benefits. However, its processing conditions significantly influence the retention of these compounds. Therefore, this study investigated the effect of microwave pretreatment on the drying, extraction, and encapsulation of Centella asiatica bioactive compounds. Leaves were subjected to steam and microwave blanching for 30, 45, and 60 s, followed by drying at 30, 40, and 50 °C. Drying kinetics were analyzed using different mathematical models. Ultrasound-assisted extraction was employed to enhance bioactive compound yield, with optimization conducted using a Central Composite Rotatable Design (CCRD). The independent variables included sonication time (15–30 min), solvent-to-solid ratio (10:1–30:1), and solvent concentration (60–90%). The optimized extract was encapsulated using aloe vera mucilage with varying concentrations of maltodextrin and gum acacia, and freeze-dried powders were evaluated for encapsulation efficiency and physicochemical properties. Microwave blanching resulted in a higher drying rate compared to steam blanching and control samples. Blanching for 45 s followed by drying at 50 °C effectively retained bioactive compounds, making it the optimal condition for extraction. The best extraction conditions were identified as 30 min sonication, a solvent-to-solid ratio of 29:1, and a solvent concentration of 90%. The second-order polynomial model fitted well with the experimental data, and multiple regression and ANOVA confirmed the model's reliability. Among the encapsulation formulations, S4 exhibited the highest encapsulation efficiency and superior physicochemical properties. This study highlights the effectiveness of microwave blanching, optimized ultrasound-assisted extraction, and aloe vera-based encapsulation for preserving Centella asiatica bioactive compounds. These findings provide a foundation for industrial-scale processing, ensuring enhanced product stability and quality.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.