Qingyi Zhang;Xiaoxiao Fang;Tao Liu;Ronghua Wu;Liguo Liu;Chu He
{"title":"MCDiff: A Multilevel Conditional Diffusion Model for PolSAR Image Classification","authors":"Qingyi Zhang;Xiaoxiao Fang;Tao Liu;Ronghua Wu;Liguo Liu;Chu He","doi":"10.1109/JSTARS.2025.3542952","DOIUrl":null,"url":null,"abstract":"With the swift advancement of deep learning, significant strides have been made in polarimetric synthetic aperture radar (PolSAR) image classification, particularly with the advent of diffusion models that allow for explicit class probability modeling. However, existing diffusion models have yet to fully leverage the rich polarimetric characteristics of PolSAR images. To address this, we propose the multilevel conditional diffusion (MCDiff) model for PolSAR image classification, incorporating three key strategies. First, a prior learning module is constructed to capture scattering characteristics across all three polarization basis parameter spaces, providing conditional guidance for the diffusion model. Second, a multiscale and multidimensional noise prediction module is designed to reduce the information loss when noisy labels and image features of different dimensions are fused to predict noise. Finally, a multilevel high-order statistical feature learning module is introduced to aid in the additive Gaussian noise prediction of noisy labels while mitigating the impact of PolSAR images' multiplicative speckle noise on the prediction. Experimental results on three benchmark datasets confirm MCDiff's ability to achieve high-performance explicit class probability modeling for PolSAR images among the compared methods.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"6721-6737"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891635","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891635/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the swift advancement of deep learning, significant strides have been made in polarimetric synthetic aperture radar (PolSAR) image classification, particularly with the advent of diffusion models that allow for explicit class probability modeling. However, existing diffusion models have yet to fully leverage the rich polarimetric characteristics of PolSAR images. To address this, we propose the multilevel conditional diffusion (MCDiff) model for PolSAR image classification, incorporating three key strategies. First, a prior learning module is constructed to capture scattering characteristics across all three polarization basis parameter spaces, providing conditional guidance for the diffusion model. Second, a multiscale and multidimensional noise prediction module is designed to reduce the information loss when noisy labels and image features of different dimensions are fused to predict noise. Finally, a multilevel high-order statistical feature learning module is introduced to aid in the additive Gaussian noise prediction of noisy labels while mitigating the impact of PolSAR images' multiplicative speckle noise on the prediction. Experimental results on three benchmark datasets confirm MCDiff's ability to achieve high-performance explicit class probability modeling for PolSAR images among the compared methods.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.