MSDLF-K: A Multimodal Feature Learning Approach for Sentiment Analysis in Korean Incorporating Text and Speech

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Tae-Young Kim;Jufeng Yang;Eunil Park
{"title":"MSDLF-K: A Multimodal Feature Learning Approach for Sentiment Analysis in Korean Incorporating Text and Speech","authors":"Tae-Young Kim;Jufeng Yang;Eunil Park","doi":"10.1109/TMM.2024.3521707","DOIUrl":null,"url":null,"abstract":"Recently, sentiment analysis research has made significant improvements in addressing sentiment and subjectivity within textual content. The advent of multimodal deep learning techniques has further broadened this scope, enabling the integration of diverse modalities such as voice and image features alongside text. However, despite these advancements, the analysis of the Korean language remains challenging due to its inherently agglutinative nature and linguistic ambiguity, primarily examined at the sentence level. To effectively address this challenge, we propose a novel Multimodal Sentimental Deep Learning Framework for Korean (MSDLF-K), which can examine not only Korean text but also its associated speech. Our framework, MSDLF-K, integrates spectrograms and waveforms from Korean voice data with embedding vectors derived from script sentences, creating a unified multimodal representation. This approach facilitates the identification of both shared and unique features within the latent space, thereby offering valuable insights into their respective impacts on sentiment analysis performance. To validate the efficacy of MSDLF-K, we conducted a set of experiments using the emotion speech synthesis dataset. Our findings demonstrate that MSDLF-K achieves a remarkable accuracy of 79.0% in valence and 81.7% in arousal for emotion classification, metrics previously unexplored in the literature. Furthermore, empirical analysis reveals the significant influence of multimodal representations, encompassing both text and voice, on enhancing emotion analysis performance. In summary, our study not only presents a pioneering solution for sentiment analysis in the Korean language but also underscores the importance of incorporating multimodal approaches for more comprehensive and accurate sentiment analysis across diverse linguistic contexts.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1266-1276"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814984/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, sentiment analysis research has made significant improvements in addressing sentiment and subjectivity within textual content. The advent of multimodal deep learning techniques has further broadened this scope, enabling the integration of diverse modalities such as voice and image features alongside text. However, despite these advancements, the analysis of the Korean language remains challenging due to its inherently agglutinative nature and linguistic ambiguity, primarily examined at the sentence level. To effectively address this challenge, we propose a novel Multimodal Sentimental Deep Learning Framework for Korean (MSDLF-K), which can examine not only Korean text but also its associated speech. Our framework, MSDLF-K, integrates spectrograms and waveforms from Korean voice data with embedding vectors derived from script sentences, creating a unified multimodal representation. This approach facilitates the identification of both shared and unique features within the latent space, thereby offering valuable insights into their respective impacts on sentiment analysis performance. To validate the efficacy of MSDLF-K, we conducted a set of experiments using the emotion speech synthesis dataset. Our findings demonstrate that MSDLF-K achieves a remarkable accuracy of 79.0% in valence and 81.7% in arousal for emotion classification, metrics previously unexplored in the literature. Furthermore, empirical analysis reveals the significant influence of multimodal representations, encompassing both text and voice, on enhancing emotion analysis performance. In summary, our study not only presents a pioneering solution for sentiment analysis in the Korean language but also underscores the importance of incorporating multimodal approaches for more comprehensive and accurate sentiment analysis across diverse linguistic contexts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信