Adaptive Fusion Learning for Compositional Zero-Shot Recognition

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lingtong Min;Ziman Fan;Shunzhou Wang;Feiyang Dou;Xin Li;Binglu Wang
{"title":"Adaptive Fusion Learning for Compositional Zero-Shot Recognition","authors":"Lingtong Min;Ziman Fan;Shunzhou Wang;Feiyang Dou;Xin Li;Binglu Wang","doi":"10.1109/TMM.2024.3521852","DOIUrl":null,"url":null,"abstract":"Compositional Zero-Shot Learning (CZSL) aims to learn visual concepts (i.e., attributes and objects) from seen compositions and combine them to predict unseen compositions. Existing visual encoders in CZSL typically use traditional visual encoders (i.e., CNN and Transformer) or image encoders from Visual-Language Models (VLMs) to encode image features. However, traditional visual encoders need more multi-modal textual information, and image encoders of VLMs exhibit dependence on pre-training data, making them less effective when used independently for predicting unseen compositions. To overcome this limitation, we propose a novel approach based on the joint modeling of traditional visual encoders and VLMs visual encoders to enhance the prediction ability for uncommon and unseen compositions. Specifically, we design an adaptive fusion module that automatically adjusts the weighted parameters of similarity scores between traditional and VLMs methods during training, and these weighted parameters are inherited during the inference process. Given the significance of disentangling attributes and objects, we design a Multi-Attribute Object Module that, during the training phase, incorporates multiple pairs of attributes and objects as prior knowledge, leveraging this rich prior knowledge to facilitate the disentanglement of attributes and objects. Building upon this, we select the text encoder from VLMs to construct the Adaptive Fusion Network. We conduct extensive experiments on the Clothing16 K, UT-Zappos50 K, and C-GQA datasets, achieving excellent performance on the Clothing16 K and UT-Zappos50 K datasets.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1193-1204"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814709/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Compositional Zero-Shot Learning (CZSL) aims to learn visual concepts (i.e., attributes and objects) from seen compositions and combine them to predict unseen compositions. Existing visual encoders in CZSL typically use traditional visual encoders (i.e., CNN and Transformer) or image encoders from Visual-Language Models (VLMs) to encode image features. However, traditional visual encoders need more multi-modal textual information, and image encoders of VLMs exhibit dependence on pre-training data, making them less effective when used independently for predicting unseen compositions. To overcome this limitation, we propose a novel approach based on the joint modeling of traditional visual encoders and VLMs visual encoders to enhance the prediction ability for uncommon and unseen compositions. Specifically, we design an adaptive fusion module that automatically adjusts the weighted parameters of similarity scores between traditional and VLMs methods during training, and these weighted parameters are inherited during the inference process. Given the significance of disentangling attributes and objects, we design a Multi-Attribute Object Module that, during the training phase, incorporates multiple pairs of attributes and objects as prior knowledge, leveraging this rich prior knowledge to facilitate the disentanglement of attributes and objects. Building upon this, we select the text encoder from VLMs to construct the Adaptive Fusion Network. We conduct extensive experiments on the Clothing16 K, UT-Zappos50 K, and C-GQA datasets, achieving excellent performance on the Clothing16 K and UT-Zappos50 K datasets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信