Yixiong Lin , Zhengqi Wu , Shiqi You , Chen Yang , Qinglian Wang , Wang Yin , Ting Qiu
{"title":"Deep learning-based prediction of velocity and temperature distributions in metal foam with hierarchical pore structure","authors":"Yixiong Lin , Zhengqi Wu , Shiqi You , Chen Yang , Qinglian Wang , Wang Yin , Ting Qiu","doi":"10.1016/j.gce.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Constrained by the substantial computational time required for numerical simulation, a deep learning technique is applied to investigate fluid flow and heat transfer processes in metal foam with a hierarchical pore structure. This work adopted a 3D convolutional neural network (CNN) combining U-Net architecture to predict velocity and temperature distributions, alongside corresponding permeability and overall heat transfer coefficient. This approach demonstrates excellent capability in intricate image segmentation. The training sets were acquired by lattice Boltzmann method (LBM) simulations. The CNN model, trained on a substantial amount of data, demonstrates remarkable precision, exhibiting mean relative errors of 0.57% for permeability prediction and 2.27% for overall heat transfer coefficient prediction. Moreover, in CNN prediction, a broader range of structure parameters and boundary conditions beyond those in the training set was used to evaluate the practicability of the trained CNN model. In contrast to numerical simulation, the CNN model economizes approximately 95.41% and 99.57% of computational time for velocity and temperature distribution prediction, respectively, providing a novel approach for exploring transport processes in metal foam with hierarchical pore structure.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 2","pages":"Pages 209-222"},"PeriodicalIF":9.1000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695282400058X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Constrained by the substantial computational time required for numerical simulation, a deep learning technique is applied to investigate fluid flow and heat transfer processes in metal foam with a hierarchical pore structure. This work adopted a 3D convolutional neural network (CNN) combining U-Net architecture to predict velocity and temperature distributions, alongside corresponding permeability and overall heat transfer coefficient. This approach demonstrates excellent capability in intricate image segmentation. The training sets were acquired by lattice Boltzmann method (LBM) simulations. The CNN model, trained on a substantial amount of data, demonstrates remarkable precision, exhibiting mean relative errors of 0.57% for permeability prediction and 2.27% for overall heat transfer coefficient prediction. Moreover, in CNN prediction, a broader range of structure parameters and boundary conditions beyond those in the training set was used to evaluate the practicability of the trained CNN model. In contrast to numerical simulation, the CNN model economizes approximately 95.41% and 99.57% of computational time for velocity and temperature distribution prediction, respectively, providing a novel approach for exploring transport processes in metal foam with hierarchical pore structure.