COSMO-RS screening of organic mixtures for membrane extraction of aromatic amines: TOPO-based mixtures as promising solvents

IF 9.1 Q1 ENGINEERING, CHEMICAL
Gilles Van Eygen , Catherine Echezuria , Anita Buekenhoudt , João A.P. Coutinho , Bart Van der Bruggen , Patricia Luis
{"title":"COSMO-RS screening of organic mixtures for membrane extraction of aromatic amines: TOPO-based mixtures as promising solvents","authors":"Gilles Van Eygen ,&nbsp;Catherine Echezuria ,&nbsp;Anita Buekenhoudt ,&nbsp;João A.P. Coutinho ,&nbsp;Bart Van der Bruggen ,&nbsp;Patricia Luis","doi":"10.1016/j.gce.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Aromatic amines are crucial in pharmaceuticals, but their synthesis is challenging due to unfavorable reaction equilibria and the use of costly, environmentally unfriendly methods. This study presents a membrane extraction (ME) process for <em>in situ</em> product removal (ISPR) of aromatic amines. Using a supported liquid membrane (SLM), <span><math><mrow><mi>α</mi></mrow></math></span>-methylbenzylamine (MBA) and 1-methyl-3-phenylpropylamine (MPPA) were separated from isopropyl amine (IPA). Conductor-like Screening Model for Real Solvents (COSMO-RS) was employed to screen over 200 organic mixtures, identifying twelve mixtures based on trioctylphosphine oxide (TOPO), lidocaine, and menthol as solvent candidates, due to their hydrophobicity. These mixtures were analysed for critical solvent properties including density, viscosity, hydrophobicity, and H-bonding interactions. ME tests showed TOPO-thymol had the highest solvent residual and selectivity. Moreover, TOPO-thymol demonstrated solute fluxes of 9.0±3.0 g/(m<sup>2</sup> h) for MBA, 16.5±5.4 g/(m<sup>2</sup> h) for MPPA, and 0.7±0.3 g/(m<sup>2</sup> h) for IPA, with selectivity values of 12.4±0.8 for MBA/IPA and 22.8±1.4 for MPPA/IPA. Compared to undecane, which had lower selectivity values of 6.9±0.8 for MBA/IPA and 10.1±1.3 for MPPA/IPA, TOPO-thymol showed superior selectivity, indicating its promise as an extractant for ME applications.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 2","pages":"Pages 263-274"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952824000888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aromatic amines are crucial in pharmaceuticals, but their synthesis is challenging due to unfavorable reaction equilibria and the use of costly, environmentally unfriendly methods. This study presents a membrane extraction (ME) process for in situ product removal (ISPR) of aromatic amines. Using a supported liquid membrane (SLM), α-methylbenzylamine (MBA) and 1-methyl-3-phenylpropylamine (MPPA) were separated from isopropyl amine (IPA). Conductor-like Screening Model for Real Solvents (COSMO-RS) was employed to screen over 200 organic mixtures, identifying twelve mixtures based on trioctylphosphine oxide (TOPO), lidocaine, and menthol as solvent candidates, due to their hydrophobicity. These mixtures were analysed for critical solvent properties including density, viscosity, hydrophobicity, and H-bonding interactions. ME tests showed TOPO-thymol had the highest solvent residual and selectivity. Moreover, TOPO-thymol demonstrated solute fluxes of 9.0±3.0 g/(m2 h) for MBA, 16.5±5.4 g/(m2 h) for MPPA, and 0.7±0.3 g/(m2 h) for IPA, with selectivity values of 12.4±0.8 for MBA/IPA and 22.8±1.4 for MPPA/IPA. Compared to undecane, which had lower selectivity values of 6.9±0.8 for MBA/IPA and 10.1±1.3 for MPPA/IPA, TOPO-thymol showed superior selectivity, indicating its promise as an extractant for ME applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信