Pressure swing adsorption process modeling using physics-informed machine learning with transfer learning and labeled data

IF 9.1 Q1 ENGINEERING, CHEMICAL
Zhiqiang Wu , Yunquan Chen , Bingjian Zhang , Jingzheng Ren , Qinglin Chen , Huan Wang , Chang He
{"title":"Pressure swing adsorption process modeling using physics-informed machine learning with transfer learning and labeled data","authors":"Zhiqiang Wu ,&nbsp;Yunquan Chen ,&nbsp;Bingjian Zhang ,&nbsp;Jingzheng Ren ,&nbsp;Qinglin Chen ,&nbsp;Huan Wang ,&nbsp;Chang He","doi":"10.1016/j.gce.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>Pressure swing adsorption (PSA) modeling remains a challenging task since it exhibits strong dynamic and cyclic behavior. This study presents a systematic physics-informed machine learning method that integrates transfer learning and labeled data to construct a spatiotemporal model of the PSA process. To approximate the latent solutions of partial differential equations (PDEs) in the specific steps of pressurization, adsorption, heavy reflux, counter-current depressurization, and light reflux, the system's network representation is decomposed into five lightweight sub-networks. On this basis, we propose a parameter-based transfer learning (TL) combined with domain decomposition to address the long-term integration of periodic PDEs and expedite the network training process. Moreover, to tackle challenges related to sharp adsorption fronts, our method allows for the inclusion of a specified amount of labeled data at the boundaries and/or within the system in the loss function. The results show that the proposed method closely matches the outcomes achieved through the conventional numerical method, effectively simulating all steps and cyclic behavior within the PSA processes.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 2","pages":"Pages 233-248"},"PeriodicalIF":9.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952824000591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pressure swing adsorption (PSA) modeling remains a challenging task since it exhibits strong dynamic and cyclic behavior. This study presents a systematic physics-informed machine learning method that integrates transfer learning and labeled data to construct a spatiotemporal model of the PSA process. To approximate the latent solutions of partial differential equations (PDEs) in the specific steps of pressurization, adsorption, heavy reflux, counter-current depressurization, and light reflux, the system's network representation is decomposed into five lightweight sub-networks. On this basis, we propose a parameter-based transfer learning (TL) combined with domain decomposition to address the long-term integration of periodic PDEs and expedite the network training process. Moreover, to tackle challenges related to sharp adsorption fronts, our method allows for the inclusion of a specified amount of labeled data at the boundaries and/or within the system in the loss function. The results show that the proposed method closely matches the outcomes achieved through the conventional numerical method, effectively simulating all steps and cyclic behavior within the PSA processes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信