Oxidized protein aggregate lipofuscin impairs cardiomyocyte contractility via late-stage autophagy inhibition

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sophia Walter , Steffen P. Häseli , Patricia Baumgarten , Stefanie Deubel , Tobias Jung , Annika Höhn , Christiane Ott , Tilman Grune
{"title":"Oxidized protein aggregate lipofuscin impairs cardiomyocyte contractility via late-stage autophagy inhibition","authors":"Sophia Walter ,&nbsp;Steffen P. Häseli ,&nbsp;Patricia Baumgarten ,&nbsp;Stefanie Deubel ,&nbsp;Tobias Jung ,&nbsp;Annika Höhn ,&nbsp;Christiane Ott ,&nbsp;Tilman Grune","doi":"10.1016/j.redox.2025.103559","DOIUrl":null,"url":null,"abstract":"<div><div>Aging of the heart is accompanied by impairment of cardiac structure and function. At molecular level, autophagy plays a crucial role in preserving cardiac health. Autophagy maintains cellular homeostasis by facilitating balanced degradation of cytoplasmic components including organelles and misfolded or aggregated proteins. The age-related decline in autophagy favors an accumulation of protein aggregates such as lipofuscin particularly in the heart, which is composed primarily of non-proliferating cells. Therefore, this study investigates whether lipofuscin accumulation contributes to age-related functional decline of primary adult cardiomyocytes isolated from C57BL/6J mice and examines the role of autophagic flux in mediating these effects.</div><div>Results showed an age-associated reduction in cardiomyocyte contraction amplitude and an increase in autofluorescence, indicating the accumulation of lipofuscin with age. <em>In vitro</em> treatment of adult primary cardiomyocytes with artificial lipofuscin increased autofluorescence and decreased both contraction amplitude and cellular autophagic flux. Induction of autophagy with rapamycin mitigated contractile dysfunction in lipofuscin-treated cardiomyocytes, whereas inhibition of autophagic flux revealed stage-dependent effects. Late-stage autophagy inhibition using chloroquine or concanamycin A reduced cardiomyocyte contraction amplitude, whereas early-stage autophagy inhibition via 3-methyladenine did not affect contraction within 24 h.</div><div>In conclusion, our results indicate that lipofuscin directly impairs cardiomyocyte function by diminishing late-stage autophagic flux. These findings highlight the essential role of the autophagy-lysosomal system in preserving age-related loss of cardiomyocyte function caused by accumulating protein aggregates.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103559"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000722","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging of the heart is accompanied by impairment of cardiac structure and function. At molecular level, autophagy plays a crucial role in preserving cardiac health. Autophagy maintains cellular homeostasis by facilitating balanced degradation of cytoplasmic components including organelles and misfolded or aggregated proteins. The age-related decline in autophagy favors an accumulation of protein aggregates such as lipofuscin particularly in the heart, which is composed primarily of non-proliferating cells. Therefore, this study investigates whether lipofuscin accumulation contributes to age-related functional decline of primary adult cardiomyocytes isolated from C57BL/6J mice and examines the role of autophagic flux in mediating these effects.
Results showed an age-associated reduction in cardiomyocyte contraction amplitude and an increase in autofluorescence, indicating the accumulation of lipofuscin with age. In vitro treatment of adult primary cardiomyocytes with artificial lipofuscin increased autofluorescence and decreased both contraction amplitude and cellular autophagic flux. Induction of autophagy with rapamycin mitigated contractile dysfunction in lipofuscin-treated cardiomyocytes, whereas inhibition of autophagic flux revealed stage-dependent effects. Late-stage autophagy inhibition using chloroquine or concanamycin A reduced cardiomyocyte contraction amplitude, whereas early-stage autophagy inhibition via 3-methyladenine did not affect contraction within 24 h.
In conclusion, our results indicate that lipofuscin directly impairs cardiomyocyte function by diminishing late-stage autophagic flux. These findings highlight the essential role of the autophagy-lysosomal system in preserving age-related loss of cardiomyocyte function caused by accumulating protein aggregates.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信