Observation and quantitative characterization of geometric and cyclical features associated with chip segmentation during machining of Ti6Al4V alloy

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Shoujin Sun
{"title":"Observation and quantitative characterization of geometric and cyclical features associated with chip segmentation during machining of Ti6Al4V alloy","authors":"Shoujin Sun","doi":"10.1016/j.jmatprotec.2025.118794","DOIUrl":null,"url":null,"abstract":"<div><div>Chip segmentation is an important type of chip formation during machining of metals. However, there are still inconsistent variation trends in the morphological characteristics and contradictory physical models regarding chip segmentation. To better understand the chip segmentation mechanism during machining of Ti6Al4V, cyclic cutting forces during machining were recorded with a dynamometer, the periodic features on the surfaces of the chip and workpiece were observed with a scanning electron microscope (SEM) and their surface profiles and wear on tool rake face were measured with a 3D measuring laser scanning microscope in the present study. It was found that the periodic/wavy patterns on the machined surfaces of the chip and workpiece are attributed to the periodically distributed dimple/sliding rows with different spacings and heights under various cutting conditions. The observation, quantitative characterization and correlation of the periodic features on the surfaces of the chip and workpiece, cyclic cutting forces and tool wear on rake face provide useful information on how the surfaces of the chips and workpiece, and the cutting forces change during chip segmentation. This will lead to the proposal of a novel model for chip segmentation. X-ray diffraction (XRD) was also carried out to investigate the deformation mechanisms on the machined surface and longitudinal cross-section of the segmented chips.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"338 ","pages":"Article 118794"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625000846","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chip segmentation is an important type of chip formation during machining of metals. However, there are still inconsistent variation trends in the morphological characteristics and contradictory physical models regarding chip segmentation. To better understand the chip segmentation mechanism during machining of Ti6Al4V, cyclic cutting forces during machining were recorded with a dynamometer, the periodic features on the surfaces of the chip and workpiece were observed with a scanning electron microscope (SEM) and their surface profiles and wear on tool rake face were measured with a 3D measuring laser scanning microscope in the present study. It was found that the periodic/wavy patterns on the machined surfaces of the chip and workpiece are attributed to the periodically distributed dimple/sliding rows with different spacings and heights under various cutting conditions. The observation, quantitative characterization and correlation of the periodic features on the surfaces of the chip and workpiece, cyclic cutting forces and tool wear on rake face provide useful information on how the surfaces of the chips and workpiece, and the cutting forces change during chip segmentation. This will lead to the proposal of a novel model for chip segmentation. X-ray diffraction (XRD) was also carried out to investigate the deformation mechanisms on the machined surface and longitudinal cross-section of the segmented chips.
Ti6Al4V合金切削过程中切屑分割的几何和周期特征的观察与定量表征
切屑切分是金属加工中切屑形成的一种重要形式。然而,在芯片分割方面,形态学特征的变化趋势仍然不一致,物理模型也存在矛盾。为了更好地了解Ti6Al4V加工过程中切屑的切分机理,利用测力仪记录了加工过程中的循环切削力,利用扫描电镜观察了切屑和工件表面的周期性特征,利用三维测量激光扫描显微镜测量了切屑和工件表面轮廓和刀具前刀面的磨损情况。研究发现,在不同的切削条件下,切屑和工件加工表面的周期性/波浪形图案是由具有不同间距和高度的周期性分布的韧窝/滑动列引起的。对切屑和工件表面、前刀面循环切削力和刀具磨损的周期性特征的观察、定量表征和相关性,为切屑和工件表面以及切屑分割过程中切削力的变化提供了有用的信息。这将导致一种新的芯片分割模型的提出。利用x射线衍射(XRD)分析了切片加工表面和纵截面的变形机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信