{"title":"Side-to-side differences in hip bone mineral density in patients with unilateral hip osteoarthritis","authors":"Keisuke Uemura , Sotaro Kono , Kazuma Takashima , Kazunori Tamura , Ryo Higuchi , Hirokazu Mae , Nobuo Nakamura , Yoshito Otake , Yoshinobu Sato , Nobuhiko Sugano , Seiji Okada , Hidetoshi Hamada","doi":"10.1016/j.bone.2025.117456","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accurately evaluating bone mineral density (BMD) in patients with unilateral hip osteoarthritis (OA) is crucial for diagnosing osteoporosis and selecting implants for hip arthroplasty. Our goal was to measure the BMD differences between sides, examine contributing factors, and identify the optimal side for BMD assessment in these patients.</div></div><div><h3>Methods</h3><div>We analyzed 108 women with unilateral hip OA. Bilateral hip BMD was assessed automatically through quantitative CT (QCT) utilizing a validated, deep-learning-based approach. We evaluated BMD variations between the OA and healthy hips across total, neck, and distal regions. To determine their contributions, we analyzed factors, including patient demographics, Crowe classification, Bombelli classification, knee OA status, hip functional score, and gluteal muscle volume and density. Furthermore, we examined how side-to-side BMD differences influenced osteoporosis diagnosis using T-scores based on QCT.</div></div><div><h3>Results</h3><div>The average BMD on the OA side was 6.9 % lower in the total region, 14.5 % higher in the neck region, and 9.4 % lower in the distal region than on the healthy side. Contributing factors to the reduced BMD in the OA hip included younger age, Bombelli classification (atrophic type), and significant gluteal muscle atrophy. Diagnoses from the OA side revealed lower sensitivity (61 %) than those from the healthy side (88 %).</div></div><div><h3>Conclusions</h3><div>Analysis on one side alone yields a more precise osteoporosis diagnosis from the healthy side. Nonetheless, bilateral BMD assessment remains crucial, particularly in younger individuals and those with atrophic OA types. Although based on QCT, our findings support bilateral analysis by dual-energy X-ray absorptiometry for these patients.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"195 ","pages":"Article 117456"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328225000687","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Accurately evaluating bone mineral density (BMD) in patients with unilateral hip osteoarthritis (OA) is crucial for diagnosing osteoporosis and selecting implants for hip arthroplasty. Our goal was to measure the BMD differences between sides, examine contributing factors, and identify the optimal side for BMD assessment in these patients.
Methods
We analyzed 108 women with unilateral hip OA. Bilateral hip BMD was assessed automatically through quantitative CT (QCT) utilizing a validated, deep-learning-based approach. We evaluated BMD variations between the OA and healthy hips across total, neck, and distal regions. To determine their contributions, we analyzed factors, including patient demographics, Crowe classification, Bombelli classification, knee OA status, hip functional score, and gluteal muscle volume and density. Furthermore, we examined how side-to-side BMD differences influenced osteoporosis diagnosis using T-scores based on QCT.
Results
The average BMD on the OA side was 6.9 % lower in the total region, 14.5 % higher in the neck region, and 9.4 % lower in the distal region than on the healthy side. Contributing factors to the reduced BMD in the OA hip included younger age, Bombelli classification (atrophic type), and significant gluteal muscle atrophy. Diagnoses from the OA side revealed lower sensitivity (61 %) than those from the healthy side (88 %).
Conclusions
Analysis on one side alone yields a more precise osteoporosis diagnosis from the healthy side. Nonetheless, bilateral BMD assessment remains crucial, particularly in younger individuals and those with atrophic OA types. Although based on QCT, our findings support bilateral analysis by dual-energy X-ray absorptiometry for these patients.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.