Alzira Mota , Paulo Ávila , João Bastos , Luís A.C. Roque , António Pires
{"title":"Comparative Analysis of Simulated Annealing and Tabu Search for Parallel Machine Scheduling","authors":"Alzira Mota , Paulo Ávila , João Bastos , Luís A.C. Roque , António Pires","doi":"10.1016/j.procs.2025.02.154","DOIUrl":null,"url":null,"abstract":"<div><div>This paper compares the performance of Simulated Annealing and Tabu Search meta-heuristics in addressing a parallel machine scheduling problem aimed at minimizing weighted earliness, tardiness, total flowtime, and machine deterioration costs—a multi-objective optimization problem. The problem is transformed into a single-objective problem using weighting and weighting relative distance methods. Four scenarios, varying in the number of jobs and machines, are created to evaluate these metaheuristics. Computational experiments indicate that Simulated Annealing consistently yields superior solutions compared to Tabu Search in scenarios with lower dimensions despite longer run times. Conversely, Tabu Search performs better in higher-dimensional scenarios. Furthermore, it is observed that solutions generated by different weighting methods exhibit similar performance.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"256 ","pages":"Pages 573-582"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925005113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper compares the performance of Simulated Annealing and Tabu Search meta-heuristics in addressing a parallel machine scheduling problem aimed at minimizing weighted earliness, tardiness, total flowtime, and machine deterioration costs—a multi-objective optimization problem. The problem is transformed into a single-objective problem using weighting and weighting relative distance methods. Four scenarios, varying in the number of jobs and machines, are created to evaluate these metaheuristics. Computational experiments indicate that Simulated Annealing consistently yields superior solutions compared to Tabu Search in scenarios with lower dimensions despite longer run times. Conversely, Tabu Search performs better in higher-dimensional scenarios. Furthermore, it is observed that solutions generated by different weighting methods exhibit similar performance.