Neural Network Ensemble for Detecting Parasite Eggs in Microscopic Images

Matheus L.L. Bessa , Geraldo Braz Junior , João Dallyson Souza de Almeida
{"title":"Neural Network Ensemble for Detecting Parasite Eggs in Microscopic Images","authors":"Matheus L.L. Bessa ,&nbsp;Geraldo Braz Junior ,&nbsp;João Dallyson Souza de Almeida","doi":"10.1016/j.procs.2025.02.174","DOIUrl":null,"url":null,"abstract":"<div><div>Intestinal parasite infections are a global health problem. In 2022, the WHO estimates that up to 1.2 billion people will be infected with Ascaris lumbricoides. Diagnosis is conducted by analyzing faecall samples under a microscope. However, this process is laborious and prone to error. Considering this, this study proposes a methodology to automate the detection of parasite eggs in microscope images. This methodology applies multiple object detectors in an ensemble and submits a model to reduce false negatives in the public dataset Chula-ParasiteEgg-11, with 11,000 images and 11 classes of parasites. Using this approach, it was possible to reduce the false negative rate and improve the f1 score up to 0.94. The results suggest that the proposed model leads to a reduction of false negatives and an improvement in recall.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"256 ","pages":"Pages 739-746"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925005319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intestinal parasite infections are a global health problem. In 2022, the WHO estimates that up to 1.2 billion people will be infected with Ascaris lumbricoides. Diagnosis is conducted by analyzing faecall samples under a microscope. However, this process is laborious and prone to error. Considering this, this study proposes a methodology to automate the detection of parasite eggs in microscope images. This methodology applies multiple object detectors in an ensemble and submits a model to reduce false negatives in the public dataset Chula-ParasiteEgg-11, with 11,000 images and 11 classes of parasites. Using this approach, it was possible to reduce the false negative rate and improve the f1 score up to 0.94. The results suggest that the proposed model leads to a reduction of false negatives and an improvement in recall.
显微图像中寄生虫卵检测的神经网络集成
肠道寄生虫感染是一个全球性的健康问题。世卫组织估计,到2022年,将有多达12亿人感染类蛔虫。通过在显微镜下分析粪便样本进行诊断。然而,这个过程很费力,而且容易出错。考虑到这一点,本研究提出了一种在显微镜图像中自动检测寄生虫卵的方法。该方法在集成中应用多个目标检测器,并提交一个模型来减少公共数据集Chula-ParasiteEgg-11中的假阴性,该数据集包含11,000张图像和11类寄生虫。使用这种方法,可以降低假阴性率,并将f1分数提高到0.94。结果表明,提出的模型导致假阴性的减少和召回的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信