Guanlin Pan , Haowen Tan , Wenying Zheng , P. Vijayakumar , Q.M. Jonathan Wu , Audithan Sivaraman
{"title":"Three-factor authentication and key agreement protocol with collusion resistance in VANETs","authors":"Guanlin Pan , Haowen Tan , Wenying Zheng , P. Vijayakumar , Q.M. Jonathan Wu , Audithan Sivaraman","doi":"10.1016/j.jisa.2025.104029","DOIUrl":null,"url":null,"abstract":"<div><div>In vehicular ad hoc networks (VANETs), vehicles possess the capability to interact efficiently with a diverse array of services and applications provided by edge vehicular infrastructures. Concurrently, the ongoing interactions among vehicles facilitate the real-time acquisition of crucial road information. However, these vehicular communications primarily occur over unsecured public channels, rendering confidential data susceptible to illegal access by malicious entities. To address this security concern, numerous cryptographic schemes, including the widespread adoption of multi-factor authentication techniques, have been introduced. Despite these efforts, the existing authentication methods are limited, as they solely focus on verifying the legitimacy of individual users, resulting in restricted functionality and diminished security capabilities. So, three-factor authentication and key agreement protocol with collusion resistance in VANETs (TFA-CR) in this paper is developed, which also ensures resistance against collusion attacks. In the proposed design, we leverage hybrid characteristics that encompass both vehicle and user attributes, such as user identity, user-defined parameters, and vehicular verification codes. These attributes are efficiently extracted and utilized throughout the subsequent authentication process, creating a distinctive authentication mechanism tailored for real-world multi-vehicle scenarios. This enables seamless network access for individual users across different vehicles using only a single smart card. A thorough performance evaluation reveals that the protocol effectively reduces both communication overhead and computational complexity when compared to existing authentication techniques.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"90 ","pages":"Article 104029"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625000675","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In vehicular ad hoc networks (VANETs), vehicles possess the capability to interact efficiently with a diverse array of services and applications provided by edge vehicular infrastructures. Concurrently, the ongoing interactions among vehicles facilitate the real-time acquisition of crucial road information. However, these vehicular communications primarily occur over unsecured public channels, rendering confidential data susceptible to illegal access by malicious entities. To address this security concern, numerous cryptographic schemes, including the widespread adoption of multi-factor authentication techniques, have been introduced. Despite these efforts, the existing authentication methods are limited, as they solely focus on verifying the legitimacy of individual users, resulting in restricted functionality and diminished security capabilities. So, three-factor authentication and key agreement protocol with collusion resistance in VANETs (TFA-CR) in this paper is developed, which also ensures resistance against collusion attacks. In the proposed design, we leverage hybrid characteristics that encompass both vehicle and user attributes, such as user identity, user-defined parameters, and vehicular verification codes. These attributes are efficiently extracted and utilized throughout the subsequent authentication process, creating a distinctive authentication mechanism tailored for real-world multi-vehicle scenarios. This enables seamless network access for individual users across different vehicles using only a single smart card. A thorough performance evaluation reveals that the protocol effectively reduces both communication overhead and computational complexity when compared to existing authentication techniques.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.