Prompt-based polyp segmentation during endoscopy

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xinzhen Ren , Wenju Zhou , Naitong Yuan , Fang Li , Yetian Ruan , Huiyu Zhou
{"title":"Prompt-based polyp segmentation during endoscopy","authors":"Xinzhen Ren ,&nbsp;Wenju Zhou ,&nbsp;Naitong Yuan ,&nbsp;Fang Li ,&nbsp;Yetian Ruan ,&nbsp;Huiyu Zhou","doi":"10.1016/j.media.2025.103510","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate judgment and identification of polyp size is crucial in endoscopic diagnosis. However, the indistinct boundaries of polyps lead to missegmentation and missed cancer diagnoses. In this paper, a prompt-based polyp segmentation method (PPSM) is proposed to assist in early-stage cancer diagnosis during endoscopy. It combines endoscopists’ experience and artificial intelligence technology. Firstly, a prompt-based polyp segmentation network (PPSN) is presented, which contains the prompt encoding module (PEM), the feature extraction encoding module (FEEM), and the mask decoding module (MDM). The PEM encodes prompts to guide the FEEM for feature extracting and the MDM for mask generating. So that PPSN can segment polyps efficiently. Secondly, endoscopists’ ocular attention data (gazes) are used as prompts, which can enhance PPSN’s accuracy for segmenting polyps and obtain prompt data effectively in real-world. To reinforce the PPSN’s stability, non-uniform dot matrix prompts are generated to compensate for frame loss during the eye-tracking. Moreover, a data augmentation method based on the segment anything model (SAM) is introduced to enrich the prompt dataset and improve the PPSN’s adaptability. Experiments demonstrate the PPSM’s accuracy and real-time capability. The results from cross-training and cross-testing on four datasets show the PPSM’s generalization. Based on the research results, a disposable electronic endoscope with the real-time auxiliary diagnosis function for early cancer and an image processor have been developed. Part of the code and the method for generating the prompts dataset are available at <span><span>https://github.com/XinZhenRen/PPSM</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103510"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000581","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate judgment and identification of polyp size is crucial in endoscopic diagnosis. However, the indistinct boundaries of polyps lead to missegmentation and missed cancer diagnoses. In this paper, a prompt-based polyp segmentation method (PPSM) is proposed to assist in early-stage cancer diagnosis during endoscopy. It combines endoscopists’ experience and artificial intelligence technology. Firstly, a prompt-based polyp segmentation network (PPSN) is presented, which contains the prompt encoding module (PEM), the feature extraction encoding module (FEEM), and the mask decoding module (MDM). The PEM encodes prompts to guide the FEEM for feature extracting and the MDM for mask generating. So that PPSN can segment polyps efficiently. Secondly, endoscopists’ ocular attention data (gazes) are used as prompts, which can enhance PPSN’s accuracy for segmenting polyps and obtain prompt data effectively in real-world. To reinforce the PPSN’s stability, non-uniform dot matrix prompts are generated to compensate for frame loss during the eye-tracking. Moreover, a data augmentation method based on the segment anything model (SAM) is introduced to enrich the prompt dataset and improve the PPSN’s adaptability. Experiments demonstrate the PPSM’s accuracy and real-time capability. The results from cross-training and cross-testing on four datasets show the PPSM’s generalization. Based on the research results, a disposable electronic endoscope with the real-time auxiliary diagnosis function for early cancer and an image processor have been developed. Part of the code and the method for generating the prompts dataset are available at https://github.com/XinZhenRen/PPSM.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信