Performance monitoring of chemical plant field operators through eye gaze tracking

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Rohit Suresh , Babji Srinivasan , Rajagopalan Srinivasan
{"title":"Performance monitoring of chemical plant field operators through eye gaze tracking","authors":"Rohit Suresh ,&nbsp;Babji Srinivasan ,&nbsp;Rajagopalan Srinivasan","doi":"10.1016/j.compchemeng.2025.109079","DOIUrl":null,"url":null,"abstract":"<div><div>Field activities performed by human operators are indispensable in process industries despite the prevalence of automation. To ensure safe and efficient plant operations, periodic training and performance assessment of field operators (FOPs) is essential. While numerous studies have focused on control room operators, relatively little attention has been directed to FOPs. Conventional training and assessment techniques for FOPs are action-based and ignore the cognitive aspects. Here, we seek to address this crucial gap in the performance assessment of FOPs. Specifically, we use eye gaze movements of FOPs to gain insights into their information acquisition patterns, a key component of cognitive behavior. As the FOPs are mobile and visit different sections of the plant, we use head-mounted eye-trackers. A major challenge in analyzing gaze information obtained from head-mounted eye trackers is that the operators’ Field of View (FoV) varies continuously as they perform different activities. Traditionally, the challenge posed by the variations in the FoV is tackled through manual annotation of the gaze on Areas of Interest (AOIs), which is knowledge- and time-intensive. Here, we propose a methodology based on Scale-Invariant-Feature-Transform to automate the AOI identification. We demonstrate our methodology with a case study involving human subjects operating a lab-scale heat exchanger setup. Our automated approach shows high accuracy (99.6 %) in gaze-AOI mapping and requires a fraction of the time, compared to manual, frame-by-frame annotation. It, therefore, offers a practical approach for performing eye tracking on FOPs, and can engender quantification of their skills and expertise and operator-specific training.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109079"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000833","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Field activities performed by human operators are indispensable in process industries despite the prevalence of automation. To ensure safe and efficient plant operations, periodic training and performance assessment of field operators (FOPs) is essential. While numerous studies have focused on control room operators, relatively little attention has been directed to FOPs. Conventional training and assessment techniques for FOPs are action-based and ignore the cognitive aspects. Here, we seek to address this crucial gap in the performance assessment of FOPs. Specifically, we use eye gaze movements of FOPs to gain insights into their information acquisition patterns, a key component of cognitive behavior. As the FOPs are mobile and visit different sections of the plant, we use head-mounted eye-trackers. A major challenge in analyzing gaze information obtained from head-mounted eye trackers is that the operators’ Field of View (FoV) varies continuously as they perform different activities. Traditionally, the challenge posed by the variations in the FoV is tackled through manual annotation of the gaze on Areas of Interest (AOIs), which is knowledge- and time-intensive. Here, we propose a methodology based on Scale-Invariant-Feature-Transform to automate the AOI identification. We demonstrate our methodology with a case study involving human subjects operating a lab-scale heat exchanger setup. Our automated approach shows high accuracy (99.6 %) in gaze-AOI mapping and requires a fraction of the time, compared to manual, frame-by-frame annotation. It, therefore, offers a practical approach for performing eye tracking on FOPs, and can engender quantification of their skills and expertise and operator-specific training.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信