MoGERNN: An inductive traffic predictor for unobserved locations

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
Qishen Zhou , Yifan Zhang , Michail A. Makridis , Anastasios Kouvelas , Yibing Wang , Simon Hu
{"title":"MoGERNN: An inductive traffic predictor for unobserved locations","authors":"Qishen Zhou ,&nbsp;Yifan Zhang ,&nbsp;Michail A. Makridis ,&nbsp;Anastasios Kouvelas ,&nbsp;Yibing Wang ,&nbsp;Simon Hu","doi":"10.1016/j.trc.2025.105080","DOIUrl":null,"url":null,"abstract":"<div><div>Given a partially observed road network, how can we predict the traffic state of interested unobserved locations? Traffic prediction is crucial for advanced traffic management systems, with deep learning approaches showing exceptional performance. However, most existing approaches assume sensors are deployed at all locations of interest, which is impractical due to financial constraints. Furthermore, these methods are typically fragile to structural changes in sensing networks, which require costly retraining even for minor changes in sensor configuration. To address these challenges, we propose MoGERNN, an inductive spatio-temporal graph model with two key components: (i) a Mixture of Graph Experts (MoGE) with sparse gating mechanisms that dynamically route nodes to specialized graph aggregators, capturing heterogeneous spatial dependencies efficiently; (ii) a graph encoder-decoder architecture that leverages these embeddings to capture both spatial and temporal dependencies for comprehensive traffic state prediction. Experiments on two real-world datasets show MoGERNN consistently outperforms baseline methods for both observed and unobserved locations. MoGERNN can accurately predict congestion evolution even in areas without sensors, offering valuable information for traffic management. Moreover, MoGERNN is adaptable to the changes of sensor network, maintaining competitive performance even compared to its retrained counterpart. Tests performed with different numbers of available sensors confirm its consistent superiority, and ablation studies validate the effectiveness of its key modules. The code of this work is publicly available at: <span><span>https://github.com/ZJU-TSELab/MoGERNN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"174 ","pages":"Article 105080"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25000841","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Given a partially observed road network, how can we predict the traffic state of interested unobserved locations? Traffic prediction is crucial for advanced traffic management systems, with deep learning approaches showing exceptional performance. However, most existing approaches assume sensors are deployed at all locations of interest, which is impractical due to financial constraints. Furthermore, these methods are typically fragile to structural changes in sensing networks, which require costly retraining even for minor changes in sensor configuration. To address these challenges, we propose MoGERNN, an inductive spatio-temporal graph model with two key components: (i) a Mixture of Graph Experts (MoGE) with sparse gating mechanisms that dynamically route nodes to specialized graph aggregators, capturing heterogeneous spatial dependencies efficiently; (ii) a graph encoder-decoder architecture that leverages these embeddings to capture both spatial and temporal dependencies for comprehensive traffic state prediction. Experiments on two real-world datasets show MoGERNN consistently outperforms baseline methods for both observed and unobserved locations. MoGERNN can accurately predict congestion evolution even in areas without sensors, offering valuable information for traffic management. Moreover, MoGERNN is adaptable to the changes of sensor network, maintaining competitive performance even compared to its retrained counterpart. Tests performed with different numbers of available sensors confirm its consistent superiority, and ablation studies validate the effectiveness of its key modules. The code of this work is publicly available at: https://github.com/ZJU-TSELab/MoGERNN.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信