Qishen Zhou , Yifan Zhang , Michail A. Makridis , Anastasios Kouvelas , Yibing Wang , Simon Hu
{"title":"MoGERNN: An inductive traffic predictor for unobserved locations","authors":"Qishen Zhou , Yifan Zhang , Michail A. Makridis , Anastasios Kouvelas , Yibing Wang , Simon Hu","doi":"10.1016/j.trc.2025.105080","DOIUrl":null,"url":null,"abstract":"<div><div>Given a partially observed road network, how can we predict the traffic state of interested unobserved locations? Traffic prediction is crucial for advanced traffic management systems, with deep learning approaches showing exceptional performance. However, most existing approaches assume sensors are deployed at all locations of interest, which is impractical due to financial constraints. Furthermore, these methods are typically fragile to structural changes in sensing networks, which require costly retraining even for minor changes in sensor configuration. To address these challenges, we propose MoGERNN, an inductive spatio-temporal graph model with two key components: (i) a Mixture of Graph Experts (MoGE) with sparse gating mechanisms that dynamically route nodes to specialized graph aggregators, capturing heterogeneous spatial dependencies efficiently; (ii) a graph encoder-decoder architecture that leverages these embeddings to capture both spatial and temporal dependencies for comprehensive traffic state prediction. Experiments on two real-world datasets show MoGERNN consistently outperforms baseline methods for both observed and unobserved locations. MoGERNN can accurately predict congestion evolution even in areas without sensors, offering valuable information for traffic management. Moreover, MoGERNN is adaptable to the changes of sensor network, maintaining competitive performance even compared to its retrained counterpart. Tests performed with different numbers of available sensors confirm its consistent superiority, and ablation studies validate the effectiveness of its key modules. The code of this work is publicly available at: <span><span>https://github.com/ZJU-TSELab/MoGERNN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"174 ","pages":"Article 105080"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25000841","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given a partially observed road network, how can we predict the traffic state of interested unobserved locations? Traffic prediction is crucial for advanced traffic management systems, with deep learning approaches showing exceptional performance. However, most existing approaches assume sensors are deployed at all locations of interest, which is impractical due to financial constraints. Furthermore, these methods are typically fragile to structural changes in sensing networks, which require costly retraining even for minor changes in sensor configuration. To address these challenges, we propose MoGERNN, an inductive spatio-temporal graph model with two key components: (i) a Mixture of Graph Experts (MoGE) with sparse gating mechanisms that dynamically route nodes to specialized graph aggregators, capturing heterogeneous spatial dependencies efficiently; (ii) a graph encoder-decoder architecture that leverages these embeddings to capture both spatial and temporal dependencies for comprehensive traffic state prediction. Experiments on two real-world datasets show MoGERNN consistently outperforms baseline methods for both observed and unobserved locations. MoGERNN can accurately predict congestion evolution even in areas without sensors, offering valuable information for traffic management. Moreover, MoGERNN is adaptable to the changes of sensor network, maintaining competitive performance even compared to its retrained counterpart. Tests performed with different numbers of available sensors confirm its consistent superiority, and ablation studies validate the effectiveness of its key modules. The code of this work is publicly available at: https://github.com/ZJU-TSELab/MoGERNN.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.