Effect of dispersal-induced death in predator–prey metapopulation system with bistable local dynamics

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Sounov Marick, Nandadulal Bairagi
{"title":"Effect of dispersal-induced death in predator–prey metapopulation system with bistable local dynamics","authors":"Sounov Marick,&nbsp;Nandadulal Bairagi","doi":"10.1016/j.physd.2025.134597","DOIUrl":null,"url":null,"abstract":"<div><div>Metapopulation survivability largely depends on the efficient spatial movement of dispersing populations. This study investigates the predator–prey metapopulation model, where the patches are connected by weighted mean-field coupling, capturing species loss due to inefficient dispersal, along with bistability in the local system. Using a semi-analytical approach, it dissects the dynamics of individual patch system (IPS) and homogeneous patch system (HPS), a limiting case of the metapopulation with a homogeneous population distribution. Though HPS can capture a holistic metapopulation dynamic, including persistence and extinction, it fails to differentiate multi-clustered states arising from low dispersal rates and the initial value-dependent behaviours. Our simulation results uncover various emergent metapopulation dynamics, like homogeneous steady states (HSS), global synchrony, multi-cluster and chimera states. It shows that the metapopulation exhibits amplitude death (AD) and oscillation death (OD) based on the dispersal rate, efficiency, and initial active/inactive patch numbers. Moreover, the study formulates a distance-dependent dispersal efficiency on a geometrically generated network with asymmetric patch arrangement. Distance-dependent dispersal efficiency increases the occurrence of the OD state in the parametric plane. Understanding these dynamics sheds light on species survivability in metapopulation and underscores the importance of efficient spatial movement.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134597"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000764","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Metapopulation survivability largely depends on the efficient spatial movement of dispersing populations. This study investigates the predator–prey metapopulation model, where the patches are connected by weighted mean-field coupling, capturing species loss due to inefficient dispersal, along with bistability in the local system. Using a semi-analytical approach, it dissects the dynamics of individual patch system (IPS) and homogeneous patch system (HPS), a limiting case of the metapopulation with a homogeneous population distribution. Though HPS can capture a holistic metapopulation dynamic, including persistence and extinction, it fails to differentiate multi-clustered states arising from low dispersal rates and the initial value-dependent behaviours. Our simulation results uncover various emergent metapopulation dynamics, like homogeneous steady states (HSS), global synchrony, multi-cluster and chimera states. It shows that the metapopulation exhibits amplitude death (AD) and oscillation death (OD) based on the dispersal rate, efficiency, and initial active/inactive patch numbers. Moreover, the study formulates a distance-dependent dispersal efficiency on a geometrically generated network with asymmetric patch arrangement. Distance-dependent dispersal efficiency increases the occurrence of the OD state in the parametric plane. Understanding these dynamics sheds light on species survivability in metapopulation and underscores the importance of efficient spatial movement.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信