Konstantin Ryabinin, Gerasimos Sarras, Wolfgang Löffler, Olga Erokhina, Michael Biermann
{"title":"AJAS: A high performance direct solver for advancing high precision astrometry","authors":"Konstantin Ryabinin, Gerasimos Sarras, Wolfgang Löffler, Olga Erokhina, Michael Biermann","doi":"10.1016/j.jocs.2025.102554","DOIUrl":null,"url":null,"abstract":"<div><div>In astrometry, the determination of three-dimensional positions and velocities of stars based on observations from a space telescope suffers from the uncertainty of random and systematic errors. The systematic errors are introduced by imperfections of the telescope’s optics and detectors as well as in the pointing accuracy of the satellite. The fine art of astrometry consists of heuristically finding the best possible calibration model that will account for and remove these systematic errors. Since this is a process based on trial and error, appropriate software is needed that is efficient enough to solve the system of astrometric equations and reveal the astrometric parameters of stars for the given calibration model within a reasonable time. This paper is an extended version of the conference paper published and discussed at the International Conference on Computational Science 2024. In this work, we propose a novel software architecture and corresponding prototype of a direct solver optimized for running on supercomputers. The main advantages expected from this direct method over an iterative one are the numerical robustness, accuracy of the method, and the explicit calculation of the variance–covariance matrix for the estimation of the accuracy and correlation of the unknown parameters. This solver can handle astrometric systems with billions of equations within several hours. To reach the desired performance, we use state-of-the-art libraries and methods for hybrid parallel and vectorized computing. The calibration model based on Legendre polynomials is tested by generating synthetic observations on grid-shaped constellation with specified distortions. For these small-sized test data, the solver can recover perfectly the correct physical solution under the condition that the correct amount of eigenvalues is zeroed out. During the space mission, the calibration model should be carefully fine-tuned according to the real operating conditions. The developed solver is furthermore tested using mock science data related to the Japan Astrometry Satellite Mission for Infrared Exploration. Up to 9.2 billion observations of 115 thousand stars can be processed in 8.5 h utilizing 5000 CPUs. A linear scaling with the number of CPUs and a quadratic scaling with the number of observations is demonstrated.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"87 ","pages":"Article 102554"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000316","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In astrometry, the determination of three-dimensional positions and velocities of stars based on observations from a space telescope suffers from the uncertainty of random and systematic errors. The systematic errors are introduced by imperfections of the telescope’s optics and detectors as well as in the pointing accuracy of the satellite. The fine art of astrometry consists of heuristically finding the best possible calibration model that will account for and remove these systematic errors. Since this is a process based on trial and error, appropriate software is needed that is efficient enough to solve the system of astrometric equations and reveal the astrometric parameters of stars for the given calibration model within a reasonable time. This paper is an extended version of the conference paper published and discussed at the International Conference on Computational Science 2024. In this work, we propose a novel software architecture and corresponding prototype of a direct solver optimized for running on supercomputers. The main advantages expected from this direct method over an iterative one are the numerical robustness, accuracy of the method, and the explicit calculation of the variance–covariance matrix for the estimation of the accuracy and correlation of the unknown parameters. This solver can handle astrometric systems with billions of equations within several hours. To reach the desired performance, we use state-of-the-art libraries and methods for hybrid parallel and vectorized computing. The calibration model based on Legendre polynomials is tested by generating synthetic observations on grid-shaped constellation with specified distortions. For these small-sized test data, the solver can recover perfectly the correct physical solution under the condition that the correct amount of eigenvalues is zeroed out. During the space mission, the calibration model should be carefully fine-tuned according to the real operating conditions. The developed solver is furthermore tested using mock science data related to the Japan Astrometry Satellite Mission for Infrared Exploration. Up to 9.2 billion observations of 115 thousand stars can be processed in 8.5 h utilizing 5000 CPUs. A linear scaling with the number of CPUs and a quadratic scaling with the number of observations is demonstrated.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).