A multi-market scheduling model for a technical virtual power plant coalition

IF 1.9 Q4 ENERGY & FUELS
Yiqiao Shen , Jing Meng , FuLong Song , Chunyang Liu , Xiaozhong Chen , Hanrun Wang
{"title":"A multi-market scheduling model for a technical virtual power plant coalition","authors":"Yiqiao Shen ,&nbsp;Jing Meng ,&nbsp;FuLong Song ,&nbsp;Chunyang Liu ,&nbsp;Xiaozhong Chen ,&nbsp;Hanrun Wang","doi":"10.1016/j.gloei.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>During the transitional period of electricity market reforms in China, scheduling simulations of technical virtual power plants (TVPPs) are crucial owing to the lack of operational experience. This study proposes a model for TVPPs participating in the current multi-market; that is, TVPP coordinate bidding in the day-ahead energy and ramping ancillary market while purchasing unbalanced power and providing frequency regulation service in the real-time market. A multi-scenario optimization approach was employed in the day-ahead stage to manage uncertainty, and an improved Shapley value was utilized for revenue allocation. By employing linearization techniques, the model is transformed into a mixed-integer second-order cone-programming problem that can be efficiently solved using linear solvers. Numerical simulations based on actual provincial electricity market rules were conducted to validate the effectiveness of a TVPP coalition profitability.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"8 1","pages":"Pages 13-27"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511725000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

During the transitional period of electricity market reforms in China, scheduling simulations of technical virtual power plants (TVPPs) are crucial owing to the lack of operational experience. This study proposes a model for TVPPs participating in the current multi-market; that is, TVPP coordinate bidding in the day-ahead energy and ramping ancillary market while purchasing unbalanced power and providing frequency regulation service in the real-time market. A multi-scenario optimization approach was employed in the day-ahead stage to manage uncertainty, and an improved Shapley value was utilized for revenue allocation. By employing linearization techniques, the model is transformed into a mixed-integer second-order cone-programming problem that can be efficiently solved using linear solvers. Numerical simulations based on actual provincial electricity market rules were conducted to validate the effectiveness of a TVPP coalition profitability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信