{"title":"On finite-time stability of some COVID-19 models using fractional discrete calculus","authors":"Shaher Momani , Iqbal M. Batiha , Issam Bendib , Abeer Al-Nana , Adel Ouannas , Mohamed Dalah","doi":"10.1016/j.cmpbup.2025.100188","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the finite-time stability of fractional-order (FO) discrete Susceptible–Infected–Recovered (SIR) models for COVID-19, incorporating memory effects to capture real-world epidemic dynamics. We use discrete fractional calculus to analyze the stability of disease-free and pandemic equilibrium points. The theoretical framework introduces essential definitions, finite-time stability (FTS) criteria, and novel fractional-order modeling insights. Numerical simulations validate the theoretical results under various parameters, demonstrating the finite-time convergence to equilibrium states. Results highlight the flexibility of FO models in addressing delayed responses and prolonged effects, offering enhanced predictive accuracy over traditional integer-order approaches. This research contributes to the design of effective public health interventions and advances in mathematical epidemiology.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the finite-time stability of fractional-order (FO) discrete Susceptible–Infected–Recovered (SIR) models for COVID-19, incorporating memory effects to capture real-world epidemic dynamics. We use discrete fractional calculus to analyze the stability of disease-free and pandemic equilibrium points. The theoretical framework introduces essential definitions, finite-time stability (FTS) criteria, and novel fractional-order modeling insights. Numerical simulations validate the theoretical results under various parameters, demonstrating the finite-time convergence to equilibrium states. Results highlight the flexibility of FO models in addressing delayed responses and prolonged effects, offering enhanced predictive accuracy over traditional integer-order approaches. This research contributes to the design of effective public health interventions and advances in mathematical epidemiology.