On finite-time stability of some COVID-19 models using fractional discrete calculus

Shaher Momani , Iqbal M. Batiha , Issam Bendib , Abeer Al-Nana , Adel Ouannas , Mohamed Dalah
{"title":"On finite-time stability of some COVID-19 models using fractional discrete calculus","authors":"Shaher Momani ,&nbsp;Iqbal M. Batiha ,&nbsp;Issam Bendib ,&nbsp;Abeer Al-Nana ,&nbsp;Adel Ouannas ,&nbsp;Mohamed Dalah","doi":"10.1016/j.cmpbup.2025.100188","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the finite-time stability of fractional-order (FO) discrete Susceptible–Infected–Recovered (SIR) models for COVID-19, incorporating memory effects to capture real-world epidemic dynamics. We use discrete fractional calculus to analyze the stability of disease-free and pandemic equilibrium points. The theoretical framework introduces essential definitions, finite-time stability (FTS) criteria, and novel fractional-order modeling insights. Numerical simulations validate the theoretical results under various parameters, demonstrating the finite-time convergence to equilibrium states. Results highlight the flexibility of FO models in addressing delayed responses and prolonged effects, offering enhanced predictive accuracy over traditional integer-order approaches. This research contributes to the design of effective public health interventions and advances in mathematical epidemiology.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the finite-time stability of fractional-order (FO) discrete Susceptible–Infected–Recovered (SIR) models for COVID-19, incorporating memory effects to capture real-world epidemic dynamics. We use discrete fractional calculus to analyze the stability of disease-free and pandemic equilibrium points. The theoretical framework introduces essential definitions, finite-time stability (FTS) criteria, and novel fractional-order modeling insights. Numerical simulations validate the theoretical results under various parameters, demonstrating the finite-time convergence to equilibrium states. Results highlight the flexibility of FO models in addressing delayed responses and prolonged effects, offering enhanced predictive accuracy over traditional integer-order approaches. This research contributes to the design of effective public health interventions and advances in mathematical epidemiology.
基于分数阶离散微积分的COVID-19模型有限时间稳定性研究
本研究研究了COVID-19分数阶(FO)离散易感-感染-恢复(SIR)模型的有限时间稳定性,并结合记忆效应来捕捉现实世界的流行动态。我们使用离散分数微积分分析无病平衡点和大流行平衡点的稳定性。理论框架介绍了基本定义,有限时间稳定性(FTS)标准,以及新的分数阶建模见解。数值模拟验证了各种参数下的理论结果,证明了该方法在有限时间内收敛于平衡状态。结果突出了FO模型在处理延迟响应和延长效应方面的灵活性,提供了比传统整数阶方法更高的预测精度。这项研究有助于设计有效的公共卫生干预措施和数学流行病学的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信