On finite-time stability of some COVID-19 models using fractional discrete calculus

Shaher Momani , Iqbal M. Batiha , Issam Bendib , Abeer Al-Nana , Adel Ouannas , Mohamed Dalah
{"title":"On finite-time stability of some COVID-19 models using fractional discrete calculus","authors":"Shaher Momani ,&nbsp;Iqbal M. Batiha ,&nbsp;Issam Bendib ,&nbsp;Abeer Al-Nana ,&nbsp;Adel Ouannas ,&nbsp;Mohamed Dalah","doi":"10.1016/j.cmpbup.2025.100188","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the finite-time stability of fractional-order (FO) discrete Susceptible–Infected–Recovered (SIR) models for COVID-19, incorporating memory effects to capture real-world epidemic dynamics. We use discrete fractional calculus to analyze the stability of disease-free and pandemic equilibrium points. The theoretical framework introduces essential definitions, finite-time stability (FTS) criteria, and novel fractional-order modeling insights. Numerical simulations validate the theoretical results under various parameters, demonstrating the finite-time convergence to equilibrium states. Results highlight the flexibility of FO models in addressing delayed responses and prolonged effects, offering enhanced predictive accuracy over traditional integer-order approaches. This research contributes to the design of effective public health interventions and advances in mathematical epidemiology.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the finite-time stability of fractional-order (FO) discrete Susceptible–Infected–Recovered (SIR) models for COVID-19, incorporating memory effects to capture real-world epidemic dynamics. We use discrete fractional calculus to analyze the stability of disease-free and pandemic equilibrium points. The theoretical framework introduces essential definitions, finite-time stability (FTS) criteria, and novel fractional-order modeling insights. Numerical simulations validate the theoretical results under various parameters, demonstrating the finite-time convergence to equilibrium states. Results highlight the flexibility of FO models in addressing delayed responses and prolonged effects, offering enhanced predictive accuracy over traditional integer-order approaches. This research contributes to the design of effective public health interventions and advances in mathematical epidemiology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信