Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng
{"title":"Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis","authors":"Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng","doi":"10.1016/j.actphy.2025.100073","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating frequency of extreme weather events globally has necessitated immediate action to mitigate the impacts and threats posed by excessive greenhouse gas emissions, particularly carbon dioxide (CO<sub>2</sub>). Consequently, reducing CO<sub>2</sub> emissions has become imperative, with decarbonization techniques being extensively investigated worldwide to achieve net-zero emissions. From an energy perspective, CO<sub>2</sub> represents an abundant and low-cost carbon resource that can be converted into high-value chemical products through reactions with hydrocarbons, including alkanes, alkenes, aromatic hydrocarbons, and polyolefins. Through hydrogen transfer, CO<sub>2</sub> can be reduced to CO, accompanied by the formation of H<sub>2</sub>O. CO<sub>2</sub> and hydrocarbons can also be transformed into syngas (CO and H<sub>2</sub>) <em>via</em> dry reforming. Furthermore, CO<sub>2</sub> can be incorporated into hydrocarbon molecules, resulting in carbon chain growth, such as the production of alcohols, carboxylic acids, and aromatics. However, due to the thermodynamic stability and kinetic inertness of CO<sub>2</sub>, as well as the high bond energy and low polarity of hydrocarbon C–H bonds, the conversion of CO<sub>2</sub> and hydrocarbons remains a highly challenging and demanding strategic objective. This review focuses on the synergistic catalytic valorization of CO<sub>2</sub> and hydrocarbons using heterogeneous catalysts, summarizing recent advancements in coupling CO<sub>2</sub> with various hydrocarbons. It also examines relevant kinetic models, including Langmuir-Hinshelwood and Eley-Rideal mechanisms. For catalyst design, bifunctional catalysts with distinct active sites can independently activate these two reactive molecules, and the modulation of acid-base properties, oxygen vacancies, and interfacial interactions represents an effective strategy to optimize catalytic performance. Finally, future directions for advancing CO<sub>2</sub>-hydrocarbon co-utilization technologies are proposed, along with recommendations for low-carbon development strategies.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 7","pages":"Article 100073"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000293","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating frequency of extreme weather events globally has necessitated immediate action to mitigate the impacts and threats posed by excessive greenhouse gas emissions, particularly carbon dioxide (CO2). Consequently, reducing CO2 emissions has become imperative, with decarbonization techniques being extensively investigated worldwide to achieve net-zero emissions. From an energy perspective, CO2 represents an abundant and low-cost carbon resource that can be converted into high-value chemical products through reactions with hydrocarbons, including alkanes, alkenes, aromatic hydrocarbons, and polyolefins. Through hydrogen transfer, CO2 can be reduced to CO, accompanied by the formation of H2O. CO2 and hydrocarbons can also be transformed into syngas (CO and H2) via dry reforming. Furthermore, CO2 can be incorporated into hydrocarbon molecules, resulting in carbon chain growth, such as the production of alcohols, carboxylic acids, and aromatics. However, due to the thermodynamic stability and kinetic inertness of CO2, as well as the high bond energy and low polarity of hydrocarbon C–H bonds, the conversion of CO2 and hydrocarbons remains a highly challenging and demanding strategic objective. This review focuses on the synergistic catalytic valorization of CO2 and hydrocarbons using heterogeneous catalysts, summarizing recent advancements in coupling CO2 with various hydrocarbons. It also examines relevant kinetic models, including Langmuir-Hinshelwood and Eley-Rideal mechanisms. For catalyst design, bifunctional catalysts with distinct active sites can independently activate these two reactive molecules, and the modulation of acid-base properties, oxygen vacancies, and interfacial interactions represents an effective strategy to optimize catalytic performance. Finally, future directions for advancing CO2-hydrocarbon co-utilization technologies are proposed, along with recommendations for low-carbon development strategies.