N-doped graphene quantum dots combined with Ag nanoparticles for luminescence based analytical sensing of gentamycin after solid-phase extraction in a molecularly-imprinted polymer
Igor A. Pinto , Carlos A.T. Toloza , Anna De Falco , Joseany M.S. Almeida , Marlin J. Pedrozo-Peñafiel , Andrea R. da Silva , Dunieskys G. Larrude , Ricardo Q. Aucelio
{"title":"N-doped graphene quantum dots combined with Ag nanoparticles for luminescence based analytical sensing of gentamycin after solid-phase extraction in a molecularly-imprinted polymer","authors":"Igor A. Pinto , Carlos A.T. Toloza , Anna De Falco , Joseany M.S. Almeida , Marlin J. Pedrozo-Peñafiel , Andrea R. da Silva , Dunieskys G. Larrude , Ricardo Q. Aucelio","doi":"10.1016/j.jpba.2025.116795","DOIUrl":null,"url":null,"abstract":"<div><div>A luminescence-based method was developed to detect gentamicin using silver nanoparticles (AgNPs) associated with nitrogen-doped graphene quantum dots (N-GQDs). When gentamicin sulfate interacts with the AgNPs/N-GQDs system, the characteristic blue fluorescence of N-GQDs, which had been previously turned off by AgNPs, is restored. Under specific conditions (such as the amount of synthesis dispersion and pH), this AgNPs/N-GQDs probe enabled quantification of gentamicin ranging from 3.0 × 10<sup>−7</sup> to 6.0 × 10<sup>−6</sup> mol L<sup>−1</sup>. To address interference from other substances during the analysis, a solid-phase extraction, with a kanamycin-imprinted polymer cartridge, enabled accurate results. Two veterinary pharmaceutical samples were used to test the method and results were in agreement with those achieved by obtained using high-performance liquid chromatography with analyte chemical derivatization. This new method is straightforward, sensitive, and selective, and it is also considered eco-friendly (0.63 score Analytical greenness calculator) since it avoids the use of toxic chemical derivatization reagents, use nanoquantities of carbon and silver based nanomaterials and aqueous systems.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"260 ","pages":"Article 116795"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525001360","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A luminescence-based method was developed to detect gentamicin using silver nanoparticles (AgNPs) associated with nitrogen-doped graphene quantum dots (N-GQDs). When gentamicin sulfate interacts with the AgNPs/N-GQDs system, the characteristic blue fluorescence of N-GQDs, which had been previously turned off by AgNPs, is restored. Under specific conditions (such as the amount of synthesis dispersion and pH), this AgNPs/N-GQDs probe enabled quantification of gentamicin ranging from 3.0 × 10−7 to 6.0 × 10−6 mol L−1. To address interference from other substances during the analysis, a solid-phase extraction, with a kanamycin-imprinted polymer cartridge, enabled accurate results. Two veterinary pharmaceutical samples were used to test the method and results were in agreement with those achieved by obtained using high-performance liquid chromatography with analyte chemical derivatization. This new method is straightforward, sensitive, and selective, and it is also considered eco-friendly (0.63 score Analytical greenness calculator) since it avoids the use of toxic chemical derivatization reagents, use nanoquantities of carbon and silver based nanomaterials and aqueous systems.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.