FLZ attenuates Parkinson's disease pathological damage by increasing glycoursodeoxycholic acid production via down-regulating Clostridium innocuum

IF 14.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Meiyu Shang, Jingwen Ning, Caixia Zang, Jingwei Ma, Yang Yang, Yueqi Jiang, Qiuzhu Chen, Yirong Dong, Jinrong Wang, Fangfang Li, Xiuqi Bao, Dan Zhang
{"title":"FLZ attenuates Parkinson's disease pathological damage by increasing glycoursodeoxycholic acid production via down-regulating Clostridium innocuum","authors":"Meiyu Shang,&nbsp;Jingwen Ning,&nbsp;Caixia Zang,&nbsp;Jingwei Ma,&nbsp;Yang Yang,&nbsp;Yueqi Jiang,&nbsp;Qiuzhu Chen,&nbsp;Yirong Dong,&nbsp;Jinrong Wang,&nbsp;Fangfang Li,&nbsp;Xiuqi Bao,&nbsp;Dan Zhang","doi":"10.1016/j.apsb.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing evidence shows that the early lesions of Parkinson's disease (PD) originate from gut, and correction of microbiota dysbiosis is a promising therapy for PD. FLZ is a neuroprotective agent on PD, which has been validated capable of alleviating microbiota dysbiosis in PD mice. However, the detailed mechanisms still need elucidated. Through metabolomics and 16S rRNA analysis, we identified glycoursodeoxycholic acid (GUDCA) was the most affected differential microbial metabolite by FLZ treatment, which was specially and negatively regulated by <em>Clostridium innocuum</em>, a differential microbiota with the strongest correlation to GUDCA production, through inhibiting bile salt hydrolase (BSH) enzyme. The protection of GUDCA on colon and brain were also clarified in PD models, showing that it could activate Nrf2 pathway, further validating that FLZ protected dopaminergic neurons through promoting GUDCA production. Our study uncovered that FLZ improved PD through microbiota–gut–brain axis, and also gave insights into modulation of microbial metabolites may serve as an important strategy for treating PD.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 2","pages":"Pages 973-990"},"PeriodicalIF":14.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221138352400412X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing evidence shows that the early lesions of Parkinson's disease (PD) originate from gut, and correction of microbiota dysbiosis is a promising therapy for PD. FLZ is a neuroprotective agent on PD, which has been validated capable of alleviating microbiota dysbiosis in PD mice. However, the detailed mechanisms still need elucidated. Through metabolomics and 16S rRNA analysis, we identified glycoursodeoxycholic acid (GUDCA) was the most affected differential microbial metabolite by FLZ treatment, which was specially and negatively regulated by Clostridium innocuum, a differential microbiota with the strongest correlation to GUDCA production, through inhibiting bile salt hydrolase (BSH) enzyme. The protection of GUDCA on colon and brain were also clarified in PD models, showing that it could activate Nrf2 pathway, further validating that FLZ protected dopaminergic neurons through promoting GUDCA production. Our study uncovered that FLZ improved PD through microbiota–gut–brain axis, and also gave insights into modulation of microbial metabolites may serve as an important strategy for treating PD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmaceutica Sinica. B
Acta Pharmaceutica Sinica. B Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍: The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB). Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics. A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信