A plug-and-play fully on-the-job real-time reinforcement learning algorithm for a direct-drive tandem-wing experiment platforms under multiple random operating conditions

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zhang Minghao , Song Bifeng , Yang Xiaojun , Wang Liang
{"title":"A plug-and-play fully on-the-job real-time reinforcement learning algorithm for a direct-drive tandem-wing experiment platforms under multiple random operating conditions","authors":"Zhang Minghao ,&nbsp;Song Bifeng ,&nbsp;Yang Xiaojun ,&nbsp;Wang Liang","doi":"10.1016/j.engappai.2025.110373","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the motion control problem of the Direct-Drive Tandem-Wing Experiment Platform (DDTWEP), focusing on designing effective direct and transitional operating strategies for pitch, roll, and yaw under nonlinear, unsteady aerodynamic interference caused by high-frequency oscillations and closely spaced tandem wings by leveraging advanced artificial intelligence (AI) techniques. The Concerto Reinforcement Learning Extension (CRL2E) algorithm, a novel AI approach, is proposed to tackle this challenge, featuring the innovative Physics-Inspired Rule-Based Policy Composer strategy and experimental validation. The results demonstrate that the CRL2E algorithm maintains safety and efficiency throughout the training process, even with randomly initialized policy weights. In DDTWEP's plug-and-play, fully on-the-job motion control problem, the algorithm achieves a performance improvement of at least fourteen-fold and up to sixty-six-fold within the first five hundred interactions compared to Soft Actor-Critic (SAC), Proximal Policy Optimization (PPO), and Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms. Furthermore, to further verify the rationality and performance of the module and algorithm design, this study introduces two perturbations: Time-Interleaved Capability Perturbation and Composer Perturbation, and develops multiple algorithms for comparative experiments. The experimental results show that compared to existing Concerto Reinforcement Learning (CRL) frameworks, the CRL2E algorithm achieves an 8.3%–60.4% enhancement in tracking accuracy, a 36.11%–57.64% improvement in convergence speed over the CRL with Composer Perturbation algorithm, and a 43.52%–65.85% improvement over the CRL with Time-Interleaved Capability Perturbation and Composer Perturbation algorithms, indicating the rationality of the CRL2E algorithm design. Regarding generalizability, the CRL2E algorithm demonstrates significant applicability in quadrotor flight control, highlighting its potential versatility. From a technical affinity perspective, the CRL2E algorithm is well-suited for integrating pretraining techniques, demonstrating excellent safety and efficiency in addressing cross-task plug-and-play and fully on-the-job fine-tuning problems. Regarding deplorability, hardware requirements were analyzed through ten thousand runs on diverse edge computing platforms, computational models, and operating systems to guide real-world deployment. Based on the experimental results, a real-time hardware-in-the-loop simulation system was constructed to validate the algorithm's effectiveness under realistic conditions. Additionally, an innovative yaw mechanism and its corresponding system model are introduced in this study to enhance the complexity of the system dynamics. These contributions provide valuable insights for addressing motion control challenges in complex mechanical systems.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"148 ","pages":"Article 110373"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625003732","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the motion control problem of the Direct-Drive Tandem-Wing Experiment Platform (DDTWEP), focusing on designing effective direct and transitional operating strategies for pitch, roll, and yaw under nonlinear, unsteady aerodynamic interference caused by high-frequency oscillations and closely spaced tandem wings by leveraging advanced artificial intelligence (AI) techniques. The Concerto Reinforcement Learning Extension (CRL2E) algorithm, a novel AI approach, is proposed to tackle this challenge, featuring the innovative Physics-Inspired Rule-Based Policy Composer strategy and experimental validation. The results demonstrate that the CRL2E algorithm maintains safety and efficiency throughout the training process, even with randomly initialized policy weights. In DDTWEP's plug-and-play, fully on-the-job motion control problem, the algorithm achieves a performance improvement of at least fourteen-fold and up to sixty-six-fold within the first five hundred interactions compared to Soft Actor-Critic (SAC), Proximal Policy Optimization (PPO), and Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms. Furthermore, to further verify the rationality and performance of the module and algorithm design, this study introduces two perturbations: Time-Interleaved Capability Perturbation and Composer Perturbation, and develops multiple algorithms for comparative experiments. The experimental results show that compared to existing Concerto Reinforcement Learning (CRL) frameworks, the CRL2E algorithm achieves an 8.3%–60.4% enhancement in tracking accuracy, a 36.11%–57.64% improvement in convergence speed over the CRL with Composer Perturbation algorithm, and a 43.52%–65.85% improvement over the CRL with Time-Interleaved Capability Perturbation and Composer Perturbation algorithms, indicating the rationality of the CRL2E algorithm design. Regarding generalizability, the CRL2E algorithm demonstrates significant applicability in quadrotor flight control, highlighting its potential versatility. From a technical affinity perspective, the CRL2E algorithm is well-suited for integrating pretraining techniques, demonstrating excellent safety and efficiency in addressing cross-task plug-and-play and fully on-the-job fine-tuning problems. Regarding deplorability, hardware requirements were analyzed through ten thousand runs on diverse edge computing platforms, computational models, and operating systems to guide real-world deployment. Based on the experimental results, a real-time hardware-in-the-loop simulation system was constructed to validate the algorithm's effectiveness under realistic conditions. Additionally, an innovative yaw mechanism and its corresponding system model are introduced in this study to enhance the complexity of the system dynamics. These contributions provide valuable insights for addressing motion control challenges in complex mechanical systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信