{"title":"Novel cell-to-cell communications between macrophages and fibroblasts regulate obesity-induced adipose tissue fibrosis","authors":"Hiro Kohda, Miyako Tanaka, Shigeyuki Shichino, Satoko Arakawa, Tadasuke Komori, Ayaka Ito, Eri Wada, Kozue Ochi, Xunmei Yuan, Takehiko Takeda, Atsuhito Saiki, Ichiro Tatsuno, Kenji Ikeda, Yuki Miyai, Atsushi Enomoto, Yoshihiro Morikawa, Shigeomi Shimizu, Satoshi Ueha, Kouji Matsushima, Yoshihiro Ogawa, Takayoshi Suganami","doi":"10.2337/db24-0762","DOIUrl":null,"url":null,"abstract":"Recent evidence has shown that adipose tissue eventually develops fibrosis through complex cellular crosstalk. Although advances in single-cell transcriptomics have provided new insights into cell diversity during this process, little is known about the interactions among the distinct cell types. In this study, we employed single-cell analytical approaches to investigate cell-tocell communications between macrophages and fibroblasts in the adipose tissue of diet-induced obese mice. Spatial transcriptomics was used to understand local cellular interaction within crown-like structures (CLSs), a characteristic histological feature of adipose tissue in obesity driving inflammation and fibrosis. Macrophages and fibroblasts were divided into several subclusters that appeared to interact more intensely and complexly with the degree of obesity. Besides previously reported Lipid-associated macrophages (LAMs), we found a small subcluster expressing Macrophage-inducible C-type lectin (Mincle), specifically localizing to CLSs. Mincle signaling increased the expression of Oncostatin M (Osm), suppressing collagen gene expression in adipose tissue fibroblasts. Consistent with these findings, Osm-deficiency in immune cells enhanced obesity-induced adipose tissue fibrosis in vivo. Moreover, Osm expression was positively correlated with Mincle expression in human adipose tissue during obesity. Our results suggest that Osm secreted by Mincle-expressing macrophages is involved in dynamic adipose tissue remodeling in the proximity of CLSs.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"14 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0762","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Recent evidence has shown that adipose tissue eventually develops fibrosis through complex cellular crosstalk. Although advances in single-cell transcriptomics have provided new insights into cell diversity during this process, little is known about the interactions among the distinct cell types. In this study, we employed single-cell analytical approaches to investigate cell-tocell communications between macrophages and fibroblasts in the adipose tissue of diet-induced obese mice. Spatial transcriptomics was used to understand local cellular interaction within crown-like structures (CLSs), a characteristic histological feature of adipose tissue in obesity driving inflammation and fibrosis. Macrophages and fibroblasts were divided into several subclusters that appeared to interact more intensely and complexly with the degree of obesity. Besides previously reported Lipid-associated macrophages (LAMs), we found a small subcluster expressing Macrophage-inducible C-type lectin (Mincle), specifically localizing to CLSs. Mincle signaling increased the expression of Oncostatin M (Osm), suppressing collagen gene expression in adipose tissue fibroblasts. Consistent with these findings, Osm-deficiency in immune cells enhanced obesity-induced adipose tissue fibrosis in vivo. Moreover, Osm expression was positively correlated with Mincle expression in human adipose tissue during obesity. Our results suggest that Osm secreted by Mincle-expressing macrophages is involved in dynamic adipose tissue remodeling in the proximity of CLSs.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.