{"title":"Modeling Thermocatalytic Systems for CO2 Hydrogenation to Methanol","authors":"Jikai Sun, Jianzhong Wu","doi":"10.1039/d5sc00211g","DOIUrl":null,"url":null,"abstract":"The hydrogenation of CO2 to CH3OH over Cu-based catalysts holds significant potential for advancing carbon sequestration and sustainable chemical processes. While numerous studies have focused on catalyst development, the environmental effects on underlying reaction mechanisms have yet to be fully understood. In this work, we develop a grand potential theory for a comprehensive analysis of CO2 hydrogenation to CH3OH over Cu (111) and Cu (211) surfaces. By integrating electronic and classical density functional calculations to bridge the “pressure gap”, the theoretical results revealed that the HCOO* formation rate may vary by several orders of magnitude depending on reaction conditions. The grand potential theory enables us to elucidate the molecular mechanisms underlying the need for high H2 pressure, the prevalence of saturated CO2 adsorption, and the important roles of CO and H2O in hydrogenation. Moreover, this study addressed and clarified controversies over CO2 versus CO adsorption and hydrogenation, the formate versus carboxy pathways, and the difference in HCOO* hydrogenation activity between Cu (111) and Cu (211) surfaces. The theoretical analysis offers a new perspective for optimizing reaction conditions and catalyst performance in methanol synthesis and can be generalized to enhance our understanding of heterogeneous catalysis under industrially relevant conditions.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"20 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc00211g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrogenation of CO2 to CH3OH over Cu-based catalysts holds significant potential for advancing carbon sequestration and sustainable chemical processes. While numerous studies have focused on catalyst development, the environmental effects on underlying reaction mechanisms have yet to be fully understood. In this work, we develop a grand potential theory for a comprehensive analysis of CO2 hydrogenation to CH3OH over Cu (111) and Cu (211) surfaces. By integrating electronic and classical density functional calculations to bridge the “pressure gap”, the theoretical results revealed that the HCOO* formation rate may vary by several orders of magnitude depending on reaction conditions. The grand potential theory enables us to elucidate the molecular mechanisms underlying the need for high H2 pressure, the prevalence of saturated CO2 adsorption, and the important roles of CO and H2O in hydrogenation. Moreover, this study addressed and clarified controversies over CO2 versus CO adsorption and hydrogenation, the formate versus carboxy pathways, and the difference in HCOO* hydrogenation activity between Cu (111) and Cu (211) surfaces. The theoretical analysis offers a new perspective for optimizing reaction conditions and catalyst performance in methanol synthesis and can be generalized to enhance our understanding of heterogeneous catalysis under industrially relevant conditions.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.