Harrison A. Clarke, Tara R. Hawkinson, Cameron J. Shedlock, Terrymar Medina, Roberto A. Ribas, Lei Wu, Zizhen Liu, Xin Ma, Yi Xia, Yu Huang, Xing He, Josephine E. Chang, Lyndsay E. A. Young, Jelena A. Juras, Michael D. Buoncristiani, Alexis N. James, Anna Rushin, Matthew E. Merritt, Annette Mestas, Jessica F. Lamb, Elena C. Manauis, Grant L. Austin, Li Chen, Pankaj K. Singh, Jiang Bian, Craig W. Vander Kooi, B. Mark Evers, Christine F. Brainson, Derek B. Allison, Matthew S. Gentry, Ramon C. Sun
{"title":"Glycogen drives tumour initiation and progression in lung adenocarcinoma","authors":"Harrison A. Clarke, Tara R. Hawkinson, Cameron J. Shedlock, Terrymar Medina, Roberto A. Ribas, Lei Wu, Zizhen Liu, Xin Ma, Yi Xia, Yu Huang, Xing He, Josephine E. Chang, Lyndsay E. A. Young, Jelena A. Juras, Michael D. Buoncristiani, Alexis N. James, Anna Rushin, Matthew E. Merritt, Annette Mestas, Jessica F. Lamb, Elena C. Manauis, Grant L. Austin, Li Chen, Pankaj K. Singh, Jiang Bian, Craig W. Vander Kooi, B. Mark Evers, Christine F. Brainson, Derek B. Allison, Matthew S. Gentry, Ramon C. Sun","doi":"10.1038/s42255-025-01243-8","DOIUrl":null,"url":null,"abstract":"<p>Lung adenocarcinoma (LUAD) is an aggressive cancer defined by oncogenic drivers and metabolic reprogramming. Here we leverage next-generation spatial screens to identify glycogen as a critical and previously underexplored oncogenic metabolite. High-throughput spatial analysis of human LUAD samples revealed that glycogen accumulation correlates with increased tumour grade and poor survival. Furthermore, we assessed the effect of increasing glycogen levels on LUAD via dietary intervention or via a genetic model. Approaches that increased glycogen levels provided compelling evidence that elevated glycogen substantially accelerates tumour progression, driving the formation of higher-grade tumours, while the genetic ablation of glycogen synthase effectively suppressed tumour growth. To further establish the connection between glycogen and cellular metabolism, we developed a multiplexed spatial technique to simultaneously assess glycogen and cellular metabolites, uncovering a direct relationship between glycogen levels and elevated central carbon metabolites essential for tumour growth. Our findings support the conclusion that glycogen accumulation drives LUAD cancer progression and provide a framework for integrating spatial metabolomics with translational models to uncover metabolic drivers of cancer.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"13 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-025-01243-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Lung adenocarcinoma (LUAD) is an aggressive cancer defined by oncogenic drivers and metabolic reprogramming. Here we leverage next-generation spatial screens to identify glycogen as a critical and previously underexplored oncogenic metabolite. High-throughput spatial analysis of human LUAD samples revealed that glycogen accumulation correlates with increased tumour grade and poor survival. Furthermore, we assessed the effect of increasing glycogen levels on LUAD via dietary intervention or via a genetic model. Approaches that increased glycogen levels provided compelling evidence that elevated glycogen substantially accelerates tumour progression, driving the formation of higher-grade tumours, while the genetic ablation of glycogen synthase effectively suppressed tumour growth. To further establish the connection between glycogen and cellular metabolism, we developed a multiplexed spatial technique to simultaneously assess glycogen and cellular metabolites, uncovering a direct relationship between glycogen levels and elevated central carbon metabolites essential for tumour growth. Our findings support the conclusion that glycogen accumulation drives LUAD cancer progression and provide a framework for integrating spatial metabolomics with translational models to uncover metabolic drivers of cancer.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.