Jing Ding, Hanxiao Xiang, Jiannan Hua, Wenqiang Zhou, Naitian Liu, Le Zhang, Na Xin, Bing Wu, Kenji Watanabe, Takashi Taniguchi, Zdeněk Sofer, Wei Zhu, Shuigang Xu
{"title":"Electric-Field Switchable Chirality in Rhombohedral Graphene Chern Insulators Stabilized by Tungsten Diselenide","authors":"Jing Ding, Hanxiao Xiang, Jiannan Hua, Wenqiang Zhou, Naitian Liu, Le Zhang, Na Xin, Bing Wu, Kenji Watanabe, Takashi Taniguchi, Zdeněk Sofer, Wei Zhu, Shuigang Xu","doi":"10.1103/physrevx.15.011052","DOIUrl":null,"url":null,"abstract":"Chern insulators host topologically protected chiral edge currents with quantized conductance characterized by their Chern number. Switching the chirality of a Chern insulator, namely, the direction of the edge current, is highly challenging due to topologically forbidden backscattering but is of considerable importance for the design of topological devices. Nevertheless, this can be achieved by reversing the sign of the Chern number. Here, we report electrically switchable chirality in rhombohedral multilayer graphene-based Chern insulators through a topological phase transition. By introducing moiré superlattices in rhombohedral heptalayer graphene, we observe a cascade of topological phase transitions at quarter electron filling of a moiré band with the Chern number tunable from −</a:mo>1</a:mn></a:mrow></a:math>, 1, to 2. Furthermore, integrating monolayer tungsten diselenide at the moiréless interface of rhombohedral decalayer graphene and hexagonal boron nitride superlattices stabilizes the Chern insulators, enabling quantized anomalous Hall resistance of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>h</c:mi><c:mo stretchy=\"false\">/</c:mo><c:mn>2</c:mn><c:msup><c:mi>e</c:mi><c:mn>2</c:mn></c:msup></c:mrow></c:math>. Remarkably, the Chern number can be electrically switched using displacement fields, leading to a topological phase transition from <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mrow><f:mo>−</f:mo><f:mn>1</f:mn></f:mrow></f:math> to 2. Our work establishes rhombohedral multilayer graphene moiré superlattices as a versatile platform for topological engineering, with switchable chirality offering significant promise for integrating chiral edge currents into topological electronic circuits. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"31 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011052","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chern insulators host topologically protected chiral edge currents with quantized conductance characterized by their Chern number. Switching the chirality of a Chern insulator, namely, the direction of the edge current, is highly challenging due to topologically forbidden backscattering but is of considerable importance for the design of topological devices. Nevertheless, this can be achieved by reversing the sign of the Chern number. Here, we report electrically switchable chirality in rhombohedral multilayer graphene-based Chern insulators through a topological phase transition. By introducing moiré superlattices in rhombohedral heptalayer graphene, we observe a cascade of topological phase transitions at quarter electron filling of a moiré band with the Chern number tunable from −1, 1, to 2. Furthermore, integrating monolayer tungsten diselenide at the moiréless interface of rhombohedral decalayer graphene and hexagonal boron nitride superlattices stabilizes the Chern insulators, enabling quantized anomalous Hall resistance of h/2e2. Remarkably, the Chern number can be electrically switched using displacement fields, leading to a topological phase transition from −1 to 2. Our work establishes rhombohedral multilayer graphene moiré superlattices as a versatile platform for topological engineering, with switchable chirality offering significant promise for integrating chiral edge currents into topological electronic circuits. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.