Álvaro Quesada, Manuel Hernández Fernández, Iris Menéndez
{"title":"Cranial morphology in flying squirrels: diet, shape, and size disparity across tropical and temperate biomes","authors":"Álvaro Quesada, Manuel Hernández Fernández, Iris Menéndez","doi":"10.1186/s12983-025-00556-4","DOIUrl":null,"url":null,"abstract":"Species richness increases gradually as latitude decreases, however, the explanation for this phenomenon remains unclear. Ecological hypotheses suggest that greater niche diversity in tropical biomes may facilitate the coexistence of a larger number of species. The close relationship between species morphology and ecology can lead to a greater morphological disparity in tropical biomes. In this study, we used 2D geometric morphometric techniques on the ventral view of the cranium of flying squirrels (Pteromyini, Sciuridae) to determine the relationship between diet and cranial morphology and to evaluate if morphological disparity is higher in tropical biomes. The results show that diet has a significant impact on cranial shape and size, with large, wide and robust crania in folivorous and generalist species, while frugivorous species tend towards smaller and narrower crania, and nucivorous have a wide variability. This suggests that biomes with more available dietary niches would show greater morphological disparity. However, we found no statistical differences in shape and size disparity among biomes or between observed and simulated disparity based on species richness. Our results show that there are not disparity differences between tropical and temperate biomes, even when temperate biomes are less rich than tropical ones, suggesting that the quantity of available niches may not be the key factor in generating morphological disparity. Instead, it could be the presence of extreme niches that demand specialised adaptations for exploitation, which might be of greater significance. A greater importance of size-changing adaptations would decrease shape disparity in biomes with many niches.","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-025-00556-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Species richness increases gradually as latitude decreases, however, the explanation for this phenomenon remains unclear. Ecological hypotheses suggest that greater niche diversity in tropical biomes may facilitate the coexistence of a larger number of species. The close relationship between species morphology and ecology can lead to a greater morphological disparity in tropical biomes. In this study, we used 2D geometric morphometric techniques on the ventral view of the cranium of flying squirrels (Pteromyini, Sciuridae) to determine the relationship between diet and cranial morphology and to evaluate if morphological disparity is higher in tropical biomes. The results show that diet has a significant impact on cranial shape and size, with large, wide and robust crania in folivorous and generalist species, while frugivorous species tend towards smaller and narrower crania, and nucivorous have a wide variability. This suggests that biomes with more available dietary niches would show greater morphological disparity. However, we found no statistical differences in shape and size disparity among biomes or between observed and simulated disparity based on species richness. Our results show that there are not disparity differences between tropical and temperate biomes, even when temperate biomes are less rich than tropical ones, suggesting that the quantity of available niches may not be the key factor in generating morphological disparity. Instead, it could be the presence of extreme niches that demand specialised adaptations for exploitation, which might be of greater significance. A greater importance of size-changing adaptations would decrease shape disparity in biomes with many niches.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.