Shaun G. Hong, Sang Mok Park, Semin Kwon, Haripriya Sakthivel, Sreeram P. Nagappa, Jung Woo Leem, Steven R. Steinhubl, Pascal Ngiruwonsanga, Jean-Louis N. Mangara, Célestin Twizere, Young L. Kim
{"title":"Smartphone conjunctiva photography for malaria risk stratification in asymptomatic school age children","authors":"Shaun G. Hong, Sang Mok Park, Semin Kwon, Haripriya Sakthivel, Sreeram P. Nagappa, Jung Woo Leem, Steven R. Steinhubl, Pascal Ngiruwonsanga, Jean-Louis N. Mangara, Célestin Twizere, Young L. Kim","doi":"10.1038/s41746-025-01548-8","DOIUrl":null,"url":null,"abstract":"<p>Malaria remains a major global health challenge. Although effective control relies on testing all suspected cases, asymptomatic infections in school-age children are frequently overlooked. Advances in retinal imaging and computer vision have enhanced malaria detection. However, noninvasive, point-of-care malaria detection remains unrealized, partly because of the need for specialized equipment. Here we report radiomic analyses of 4302 photographs of the palpebral conjunctiva captured using unmodified smartphone cameras from asymptomatic 405 participants aged 5 to 15 years to predict malaria risk. Our neural network classification model of radiomic features achieves an area under the receiver operating characteristic curve of 0.76 with 95% confidence intervals from 0.68 to 0.84 in distinguishing between malaria-infected and non-infected cases in endemic regions. Photographing the inner eyelid provides the advantages of easy accessibility and direct exposure to the microvasculature. This mobile health approach has the potential for malaria prescreening and managing febrile illness in resource-limited settings.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"40 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01548-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria remains a major global health challenge. Although effective control relies on testing all suspected cases, asymptomatic infections in school-age children are frequently overlooked. Advances in retinal imaging and computer vision have enhanced malaria detection. However, noninvasive, point-of-care malaria detection remains unrealized, partly because of the need for specialized equipment. Here we report radiomic analyses of 4302 photographs of the palpebral conjunctiva captured using unmodified smartphone cameras from asymptomatic 405 participants aged 5 to 15 years to predict malaria risk. Our neural network classification model of radiomic features achieves an area under the receiver operating characteristic curve of 0.76 with 95% confidence intervals from 0.68 to 0.84 in distinguishing between malaria-infected and non-infected cases in endemic regions. Photographing the inner eyelid provides the advantages of easy accessibility and direct exposure to the microvasculature. This mobile health approach has the potential for malaria prescreening and managing febrile illness in resource-limited settings.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.