Shapley Fields Reveal Chemotopic Organization in the Mouse Olfactory Bulb Across Diverse Chemical Feature Sets.

Nikola Milicevic, Shawn D Burton, Matt Wachowiak, Vladimir Itskov
{"title":"Shapley Fields Reveal Chemotopic Organization in the Mouse Olfactory Bulb Across Diverse Chemical Feature Sets.","authors":"Nikola Milicevic, Shawn D Burton, Matt Wachowiak, Vladimir Itskov","doi":"10.1101/2025.02.26.640432","DOIUrl":null,"url":null,"abstract":"<p><p>Representations of chemical features in the neural activity of the olfactory bulb (OB) are not well-understood, unlike the neural code for stimuli of the other sensory modalities. This is because the space of olfactory stimuli lacks a natural coordinate system, and this significantly complicates characterizing neural receptive fields (tuning curves), analogous to those in the other sensory modalities. The degree to which olfactory tuning is spatially organized across the OB, often referred to as <i>chemotopy</i>, is also not well-understood. To advance our understanding of these aspects of olfactory coding, we introduce an interpretable method of <i>Shapley fields</i>, as an olfactory analog of retinotopic receptive fields. Shapley fields are spatial distributions of chemical feature importance for the tuning of OB glomeruli. We used this tool to investigate chemotopy in the OB with diverse sets of chemical features using widefield epifluorescence recordings of the mouse dorsal OB in response to stimuli across a wide range of the chemical space. We found that Shapley fields reveal a weak chemotopic organization of the chemical feature sensitivity of dorsal OB glomeruli. This organization was consistent across animals and mostly agreed across very different chemical feature sets: (i) the expert-curated PubChem database features and (ii) features derived from a Graph Neural Network trained on human olfactory perceptual tasks. Moreover, we found that the principal components of the Shapley fields often corresponded to single commonly accepted chemical classification groups, that therefore could be \"recovered\" from the neural activity in the mouse OB. Our findings suggest that Shapley fields may serve as a chemical feature-agnostic method for investigating olfactory perception.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.26.640432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Representations of chemical features in the neural activity of the olfactory bulb (OB) are not well-understood, unlike the neural code for stimuli of the other sensory modalities. This is because the space of olfactory stimuli lacks a natural coordinate system, and this significantly complicates characterizing neural receptive fields (tuning curves), analogous to those in the other sensory modalities. The degree to which olfactory tuning is spatially organized across the OB, often referred to as chemotopy, is also not well-understood. To advance our understanding of these aspects of olfactory coding, we introduce an interpretable method of Shapley fields, as an olfactory analog of retinotopic receptive fields. Shapley fields are spatial distributions of chemical feature importance for the tuning of OB glomeruli. We used this tool to investigate chemotopy in the OB with diverse sets of chemical features using widefield epifluorescence recordings of the mouse dorsal OB in response to stimuli across a wide range of the chemical space. We found that Shapley fields reveal a weak chemotopic organization of the chemical feature sensitivity of dorsal OB glomeruli. This organization was consistent across animals and mostly agreed across very different chemical feature sets: (i) the expert-curated PubChem database features and (ii) features derived from a Graph Neural Network trained on human olfactory perceptual tasks. Moreover, we found that the principal components of the Shapley fields often corresponded to single commonly accepted chemical classification groups, that therefore could be "recovered" from the neural activity in the mouse OB. Our findings suggest that Shapley fields may serve as a chemical feature-agnostic method for investigating olfactory perception.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信