Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction-associated steatohepatitis.

Ikki Sakuma, Rafael C Gaspar, Ali R Nasiri, Sylvie Dufour, Mario Kahn, Jie Zheng, Traci E LaMoia, Mateus T Guerra, Yuki Taki, Yusuke Kawashima, Dean Yimlamai, Mark Perelis, Daniel F Vatner, Kitt Falk Petersen, Maximilian Huttasch, Birgit Knebel, Sabine Kahl, Michael Roden, Varman T Samuel, Tomoaki Tanaka, Gerald I Shulman
{"title":"Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction-associated steatohepatitis.","authors":"Ikki Sakuma, Rafael C Gaspar, Ali R Nasiri, Sylvie Dufour, Mario Kahn, Jie Zheng, Traci E LaMoia, Mateus T Guerra, Yuki Taki, Yusuke Kawashima, Dean Yimlamai, Mark Perelis, Daniel F Vatner, Kitt Falk Petersen, Maximilian Huttasch, Birgit Knebel, Sabine Kahl, Michael Roden, Varman T Samuel, Tomoaki Tanaka, Gerald I Shulman","doi":"10.1101/2025.02.25.640203","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatohepatitis (MASH) represents a progressive form of steatotic liver disease which increases the risk for fibrosis and advanced liver disease. The accumulation of discrete species of bioactive lipids has been postulated to activate signaling pathways that promote inflammation and fibrosis. However, the key pathogenic lipid species is a matter of debate. We explored candidates using various dietary, molecular, and genetic models. Mice fed a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) developed steatohepatitis and manifested early markers of liver fibrosis associated with increased cholesterol content in liver lipid droplets within 5 days without any changes in total liver cholesterol content. Treating mice with antisense oligonucleotides (ASOs) against <i>Coenzyme A synthase (Cosay)</i> or treatment with bempedoic acid or atorvastatin decreased liver lipid droplet cholesterol content and prevented CDAHFD-induced MASH and the fibrotic response. All these salutary effects were abrogated with dietary cholesterol supplementation. Analysis of human liver samples demonstrated that cholesterol in liver lipid droplets was increased in humans with MASH and liver fibrosis and was higher in PNPLA3 I148M (variants rs738409) than in HSD17B13 variants (rs72613567). Together, these data identify cholesterol in liver lipid droplets as a critical mediator of MASH and demonstrate that COASY knockdown and bempedoic acid are novel therapeutic approaches to reduce liver lipid droplet cholesterol content and thereby prevent the development of MASH and liver fibrosis.</p><p><strong>Significance statement: </strong>Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis. The role of specific lipid species in its pathogenesis remains debated. Using dietary, molecular, and genetic models, we found that mice on a choline-deficient, high-fat diet (CDAHFD) developed steatohepatitis and early fibrosis, marked by increased cholesterol in liver lipid droplets within five days. Targeting COASY with antisense oligonucleotides or treating with bempedoic acid or atorvastatin reduced lipid droplet cholesterol and prevented MASH. However, dietary cholesterol supplementation negated these effects. Human liver samples confirmed elevated lipid droplet cholesterol in MASH and fibrosis, especially in PNPLA3 I148M carriers. These findings highlight cholesterol reduction as a potential MASH therapy.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.25.640203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic dysfunction-associated steatohepatitis (MASH) represents a progressive form of steatotic liver disease which increases the risk for fibrosis and advanced liver disease. The accumulation of discrete species of bioactive lipids has been postulated to activate signaling pathways that promote inflammation and fibrosis. However, the key pathogenic lipid species is a matter of debate. We explored candidates using various dietary, molecular, and genetic models. Mice fed a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) developed steatohepatitis and manifested early markers of liver fibrosis associated with increased cholesterol content in liver lipid droplets within 5 days without any changes in total liver cholesterol content. Treating mice with antisense oligonucleotides (ASOs) against Coenzyme A synthase (Cosay) or treatment with bempedoic acid or atorvastatin decreased liver lipid droplet cholesterol content and prevented CDAHFD-induced MASH and the fibrotic response. All these salutary effects were abrogated with dietary cholesterol supplementation. Analysis of human liver samples demonstrated that cholesterol in liver lipid droplets was increased in humans with MASH and liver fibrosis and was higher in PNPLA3 I148M (variants rs738409) than in HSD17B13 variants (rs72613567). Together, these data identify cholesterol in liver lipid droplets as a critical mediator of MASH and demonstrate that COASY knockdown and bempedoic acid are novel therapeutic approaches to reduce liver lipid droplet cholesterol content and thereby prevent the development of MASH and liver fibrosis.

Significance statement: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis. The role of specific lipid species in its pathogenesis remains debated. Using dietary, molecular, and genetic models, we found that mice on a choline-deficient, high-fat diet (CDAHFD) developed steatohepatitis and early fibrosis, marked by increased cholesterol in liver lipid droplets within five days. Targeting COASY with antisense oligonucleotides or treating with bempedoic acid or atorvastatin reduced lipid droplet cholesterol and prevented MASH. However, dietary cholesterol supplementation negated these effects. Human liver samples confirmed elevated lipid droplet cholesterol in MASH and fibrosis, especially in PNPLA3 I148M carriers. These findings highlight cholesterol reduction as a potential MASH therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信