Enhanced fluorescence lifetime imaging microscopy denoising via principal component analysis.

Soheil Soltani, Jack G Paulson, Emma J Fong, Shannon M Mumenthaler, Andrea M Armani
{"title":"Enhanced fluorescence lifetime imaging microscopy denoising via principal component analysis.","authors":"Soheil Soltani, Jack G Paulson, Emma J Fong, Shannon M Mumenthaler, Andrea M Armani","doi":"10.1101/2025.02.26.640419","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence Lifetime Imaging Microscopy (FLIM) quantifies the autofluorescence lifetime to measure cellular metabolism, therapeutic efficacy, and disease progression. These dynamic processes are intrinsically heterogeneous, increasing the complexity of the signal analysis. Often noise reduction strategies that combine thresholding and non-selective data smoothing filters are applied. These can result in error introduction and data loss. To mitigate these issues, we develop noise-corrected principal component analysis (NC-PCA). This approach isolates the signal of interest by selectively identifying and removing the noise. To validate NC-PCA, a secondary analysis of FLIM images of patient-derived colorectal cancer organoids exposed to a range of therapeutics was performed. First, we demonstrate that NC-PCA decreases the uncertainty up to 4-fold in comparison to conventional analysis with no data loss. Then, using a merged data set, we show that NC-PCA, unlike conventional methods, identifies multiple metabolic states. Thus, NC-PCA provides an enabling tool to advance FLIM analysis across fields.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.26.640419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence Lifetime Imaging Microscopy (FLIM) quantifies the autofluorescence lifetime to measure cellular metabolism, therapeutic efficacy, and disease progression. These dynamic processes are intrinsically heterogeneous, increasing the complexity of the signal analysis. Often noise reduction strategies that combine thresholding and non-selective data smoothing filters are applied. These can result in error introduction and data loss. To mitigate these issues, we develop noise-corrected principal component analysis (NC-PCA). This approach isolates the signal of interest by selectively identifying and removing the noise. To validate NC-PCA, a secondary analysis of FLIM images of patient-derived colorectal cancer organoids exposed to a range of therapeutics was performed. First, we demonstrate that NC-PCA decreases the uncertainty up to 4-fold in comparison to conventional analysis with no data loss. Then, using a merged data set, we show that NC-PCA, unlike conventional methods, identifies multiple metabolic states. Thus, NC-PCA provides an enabling tool to advance FLIM analysis across fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信