Coordinated spinal locomotor network dynamics emerge from cell-type-specific connectivity patterns.

F David Wandler, Benjamin K Lemberger, David L McLean, James M Murray
{"title":"Coordinated spinal locomotor network dynamics emerge from cell-type-specific connectivity patterns.","authors":"F David Wandler, Benjamin K Lemberger, David L McLean, James M Murray","doi":"10.1101/2024.12.20.629829","DOIUrl":null,"url":null,"abstract":"<p><p>Even without detailed instruction from the brain, spinal locomotor circuitry generates coordinated behavior characterized by left-right alternation, segment-to-segment propagation, and variable-speed control. While existing models have emphasized the contributions of cellular- and network-level properties, the core mechanisms underlying rhythmogenesis remain incompletely understood. Further, neither family of models has fully accounted for recent experimental results in zebrafish and other organisms pointing to the importance of cell-type-specific intersegmental connectivity patterns and recruitment of speed-selective subpopulations of interneurons. Informed by these experimental findings and others, we developed a hierarchy of increasingly detailed models of the locomotor network. We find that coordinated locomotion emerges in an inhibition-dominated network in which connectivity is determined by intersegmental phase relationships among interneurons and variable-speed control is implemented by recruitment of speed-selective subpopulations. Further, while structured excitatory connections are not necessary for rhythmogenesis, they are useful for increasing peak locomotion frequency, albeit at the cost of smooth transitions at intermediate frequencies, suggesting a basic computational trade-off between speed and control. Together, this family of models shows that network-level interactions are sufficient to generate coordinated, variable-speed locomotion, providing new interpretations of intersegmental excitatory and inhibitory connectivity, as well as the basic, recruitment-based mechanism of speed control.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.20.629829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Even without detailed instruction from the brain, spinal locomotor circuitry generates coordinated behavior characterized by left-right alternation, segment-to-segment propagation, and variable-speed control. While existing models have emphasized the contributions of cellular- and network-level properties, the core mechanisms underlying rhythmogenesis remain incompletely understood. Further, neither family of models has fully accounted for recent experimental results in zebrafish and other organisms pointing to the importance of cell-type-specific intersegmental connectivity patterns and recruitment of speed-selective subpopulations of interneurons. Informed by these experimental findings and others, we developed a hierarchy of increasingly detailed models of the locomotor network. We find that coordinated locomotion emerges in an inhibition-dominated network in which connectivity is determined by intersegmental phase relationships among interneurons and variable-speed control is implemented by recruitment of speed-selective subpopulations. Further, while structured excitatory connections are not necessary for rhythmogenesis, they are useful for increasing peak locomotion frequency, albeit at the cost of smooth transitions at intermediate frequencies, suggesting a basic computational trade-off between speed and control. Together, this family of models shows that network-level interactions are sufficient to generate coordinated, variable-speed locomotion, providing new interpretations of intersegmental excitatory and inhibitory connectivity, as well as the basic, recruitment-based mechanism of speed control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信