Cell Function Graphics: TOGGLE delineates fate and function within individual cell types via single-cell transcriptomics.

Junpeng Chen, Zhouweiyu Chen, Tianda Sun, Eric Jiang, Kaiqing Liu, Yibing Nong, Tao Yuan, Charles C Dai, Yexing Yan, Jinwen Ge, Haihui Wu, Tong Yang, Shanshan Wang, Zixiang Su, Tian Song, Ahmed Abdelbsset-Ismail, You Li, Changping Li, Richa A Singhal, Kailin Yang, Lu Cai, Alex P Carll
{"title":"Cell Function Graphics: TOGGLE delineates fate and function within individual cell types via single-cell transcriptomics.","authors":"Junpeng Chen, Zhouweiyu Chen, Tianda Sun, Eric Jiang, Kaiqing Liu, Yibing Nong, Tao Yuan, Charles C Dai, Yexing Yan, Jinwen Ge, Haihui Wu, Tong Yang, Shanshan Wang, Zixiang Su, Tian Song, Ahmed Abdelbsset-Ismail, You Li, Changping Li, Richa A Singhal, Kailin Yang, Lu Cai, Alex P Carll","doi":"10.1101/2025.01.01.631041","DOIUrl":null,"url":null,"abstract":"<p><p>Functional RNA plays a crucial role in regulating cellular processes throughout the life cycle of a cell. Identifying functional changes at each stage, from inception to development to maturation, functional execution, and eventual death or pathological transformation, often requires systematic comparisons of functional expression across cell populations. However, because cells of the same type often exhibit similar gene expression patterns regardless of function or fate, it is challenging to distinguish the stages of cellular fate or functional states within the same cell type, which also limits our understanding of cellular memory. Cells of the same type that share structural and gene expression similarities but originate from different regions and perform slightly distinct functions often retain unique epigenetic memory signatures. Although RNA serves as a key executor of fundamental cellular functions, its high expression similarity among cells of the same type limits its ability to distinguish functional heterogeneity. To overcome this challenge, we developed TOGGLE, utilizing higher-resolution analytical methods to uncover functional diversity at the cellular level. Then we based on TOGGLE developed an innovative Graph Diffusion Functional Map, which can significantly reduce noise, thereby more clearly displaying the functional grouping of RNA and enabling the capture of more subtle functional differences in high-dimensional data. Ultimately, this method effectively removes the influence of baseline functions from classification criteria and identifies key trajectories of cell fate determination.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.01.631041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional RNA plays a crucial role in regulating cellular processes throughout the life cycle of a cell. Identifying functional changes at each stage, from inception to development to maturation, functional execution, and eventual death or pathological transformation, often requires systematic comparisons of functional expression across cell populations. However, because cells of the same type often exhibit similar gene expression patterns regardless of function or fate, it is challenging to distinguish the stages of cellular fate or functional states within the same cell type, which also limits our understanding of cellular memory. Cells of the same type that share structural and gene expression similarities but originate from different regions and perform slightly distinct functions often retain unique epigenetic memory signatures. Although RNA serves as a key executor of fundamental cellular functions, its high expression similarity among cells of the same type limits its ability to distinguish functional heterogeneity. To overcome this challenge, we developed TOGGLE, utilizing higher-resolution analytical methods to uncover functional diversity at the cellular level. Then we based on TOGGLE developed an innovative Graph Diffusion Functional Map, which can significantly reduce noise, thereby more clearly displaying the functional grouping of RNA and enabling the capture of more subtle functional differences in high-dimensional data. Ultimately, this method effectively removes the influence of baseline functions from classification criteria and identifies key trajectories of cell fate determination.

细胞功能图:TOGGLE通过单细胞转录组学描述单个细胞类型的命运和功能。
功能性RNA在调节细胞整个生命周期的细胞过程中起着至关重要的作用。识别每个阶段的功能变化-从开始到发育到成熟,功能执行,最终死亡或病理转化-通常需要系统地比较细胞群的功能表达。然而,由于相同类型的细胞无论功能或命运如何,往往表现出相似的基因表达模式,因此在相同细胞类型中区分细胞命运或功能状态的阶段是具有挑战性的,这也限制了我们对细胞记忆的理解。相同类型的细胞具有相同的结构和基因表达相似性,但起源于不同的区域,并执行略微不同的功能,通常保留独特的表观遗传记忆特征。尽管RNA是基本细胞功能的关键执行者,但其在同类型细胞中的高表达相似性限制了其区分功能异质性的能力。为了克服这一挑战,我们开发了TOGGLE,利用更高分辨率的分析方法来揭示细胞水平上的功能多样性。然后,我们在TOGGLE的基础上开发了一种创新的Graph Diffusion Functional Map,可以显著降低噪声,从而更清晰地显示RNA的功能分组,从而在高维数据中捕获更细微的功能差异。最终,该方法有效地消除了基线函数对分类标准的影响,并确定了细胞命运决定的关键轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信