{"title":"Multi-Organ-on-Chip approach to study the impact of inter-organ communication on the efficacy and side effects of cancer therapy","authors":"Paweł Romanczuk , Joanna Zajda , Magdalena Matczuk , Agnieszka Zuchowska","doi":"10.1016/j.cbi.2025.111460","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer is one of the pathological conditions of the human body, which, due to its tissue diversity, is not fully understood. Currently used preclinical <em>in vitro</em> cell or animal models do not reflect the complexity and functional features of the human body, including its pathological conditions such as cancer. This fact is related to poor predictions of the effectiveness of newly developed drugs. Therefore, in our work, we focused on creating a tool that allows the reproduction of important morphological and biochemical features of the tumor <em>in vivo</em>, such as three-dimensional (3D) structure, heterogeneity, the presence of extracellular matrix (ECM), and the appropriate scale (volume to surface ratio). Moreover, the presented Multi-Organ-on-Chip (MOC) tool allows us to evaluate the effects of anticancer therapy, considering hepatic metabolism (liver model) and the assessment of its side effects on a selected organ (skin model). Our research shows that incorporating multiple organ models in one <em>in vitro</em> tool affects the viability and metabolic activity of the cells that constitute them. Moreover, we have shown how important it is to consider hepatic metabolism when evaluating the therapeutic effectiveness of two selected chemotherapy drugs, 5-Fluorouracil (5-FU) and its prodrug Capecitabine (CAP).</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"413 ","pages":"Article 111460"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725000900","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is one of the pathological conditions of the human body, which, due to its tissue diversity, is not fully understood. Currently used preclinical in vitro cell or animal models do not reflect the complexity and functional features of the human body, including its pathological conditions such as cancer. This fact is related to poor predictions of the effectiveness of newly developed drugs. Therefore, in our work, we focused on creating a tool that allows the reproduction of important morphological and biochemical features of the tumor in vivo, such as three-dimensional (3D) structure, heterogeneity, the presence of extracellular matrix (ECM), and the appropriate scale (volume to surface ratio). Moreover, the presented Multi-Organ-on-Chip (MOC) tool allows us to evaluate the effects of anticancer therapy, considering hepatic metabolism (liver model) and the assessment of its side effects on a selected organ (skin model). Our research shows that incorporating multiple organ models in one in vitro tool affects the viability and metabolic activity of the cells that constitute them. Moreover, we have shown how important it is to consider hepatic metabolism when evaluating the therapeutic effectiveness of two selected chemotherapy drugs, 5-Fluorouracil (5-FU) and its prodrug Capecitabine (CAP).
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.