Marrow adipogenic lineage precursors (MALPs) facilitate bone marrow recovery after chemotherapy

IF 3.5 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Bone Pub Date : 2025-03-06 DOI:10.1016/j.bone.2025.117446
Huan Wang , Lutian Yao , Leilei Zhong , Jiankang Fang , Qi He , Theresa M. Busch , Keith Cengel , Ling Qin
{"title":"Marrow adipogenic lineage precursors (MALPs) facilitate bone marrow recovery after chemotherapy","authors":"Huan Wang ,&nbsp;Lutian Yao ,&nbsp;Leilei Zhong ,&nbsp;Jiankang Fang ,&nbsp;Qi He ,&nbsp;Theresa M. Busch ,&nbsp;Keith Cengel ,&nbsp;Ling Qin","doi":"10.1016/j.bone.2025.117446","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotherapy-induced hematopoietic toxicity is a multifactorial challenge in the treatment of oncology patients. The resultant bone marrow suppression is a major dose-limiting side effect. In this study, we utilized 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent, to investigate the mechanisms underlying bone marrow recovery following chemotherapy. A single injection of 5-FU did not alter mouse bone structure but caused acute damage to bone marrow cellularity and vasculature. Single-cell RNA-sequencing of bone marrow mesenchymal lineage cells revealed a substantial reduction in early mesenchymal progenitors and a marked expansion of marrow adipogenic lineage precursors (MALPs) five days post-treatment. Furthermore, 5-FU upregulated the expression of myofibroblast markers in MALPs, indicating a myofibroblast transformation. Using <em>Adipoq-Cre</em> to label MALPs in vivo, we observed that 5-FU transiently increases the number of MALPs in the bone marrow by promoting their proliferation. Immunostaining confirmed the elevated expression of myofibroblast markers in MALPs. By day 14 after 5-FU injection, bone marrow cellularity and vasculature were largely restored; however, the ablation of MALPs significantly impaired this recovery. Taken together, our study uncovers the critical role of MALPs in facilitating bone marrow repair following chemotherapy-induced injury and identifies them as a potential cellular target for treating chemotherapy-induced myelosuppression.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"195 ","pages":"Article 117446"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328225000584","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy-induced hematopoietic toxicity is a multifactorial challenge in the treatment of oncology patients. The resultant bone marrow suppression is a major dose-limiting side effect. In this study, we utilized 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent, to investigate the mechanisms underlying bone marrow recovery following chemotherapy. A single injection of 5-FU did not alter mouse bone structure but caused acute damage to bone marrow cellularity and vasculature. Single-cell RNA-sequencing of bone marrow mesenchymal lineage cells revealed a substantial reduction in early mesenchymal progenitors and a marked expansion of marrow adipogenic lineage precursors (MALPs) five days post-treatment. Furthermore, 5-FU upregulated the expression of myofibroblast markers in MALPs, indicating a myofibroblast transformation. Using Adipoq-Cre to label MALPs in vivo, we observed that 5-FU transiently increases the number of MALPs in the bone marrow by promoting their proliferation. Immunostaining confirmed the elevated expression of myofibroblast markers in MALPs. By day 14 after 5-FU injection, bone marrow cellularity and vasculature were largely restored; however, the ablation of MALPs significantly impaired this recovery. Taken together, our study uncovers the critical role of MALPs in facilitating bone marrow repair following chemotherapy-induced injury and identifies them as a potential cellular target for treating chemotherapy-induced myelosuppression.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone
Bone 医学-内分泌学与代谢
CiteScore
8.90
自引率
4.90%
发文量
264
审稿时长
30 days
期刊介绍: BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信