The mitophagy receptor BNIP3L/Nix coordinates nuclear calcium signaling to modulate the muscle phenotype.

Autophagy Pub Date : 2025-07-01 Epub Date: 2025-03-24 DOI:10.1080/15548627.2025.2476872
Jared T Field, Donald Chapman, Yan Hai, Saeid Ghavami, Adrian R West, Berkay Ozerklig, Ayesha Saleem, Julia Kline, Asher A Mendelson, Jason Kindrachuk, Barbara Triggs-Raine, Joseph W Gordon
{"title":"The mitophagy receptor BNIP3L/Nix coordinates nuclear calcium signaling to modulate the muscle phenotype.","authors":"Jared T Field, Donald Chapman, Yan Hai, Saeid Ghavami, Adrian R West, Berkay Ozerklig, Ayesha Saleem, Julia Kline, Asher A Mendelson, Jason Kindrachuk, Barbara Triggs-Raine, Joseph W Gordon","doi":"10.1080/15548627.2025.2476872","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial quality control is critical in muscle to ensure contractile and metabolic function. BNIP3L/Nix is a BCL2 member, a mitophagy receptor, and has been implicated in muscle atrophy. Human genome-wide association studies (GWAS) suggest altered BNIP3L expression could predispose to mitochondrial disease. To investigate BNIP3L function, we generated a muscle-specific knockout model. <i>bnip3l</i> knockout mice displayed a ragged-red fiber phenotype, along with accumulation of mitochondria and endo/sarcoplasmic reticulum with altered morphology. Intriguingly, <i>bnip3l</i> knockout mice were more insulin sensitive with a corresponding increase in glycogen-rich muscle fibers. Kinome and gene expression analyses revealed that <i>bnip3l</i> knockout impairs NFAT and MSTN (myostatin) signaling, with alterations in muscle fiber-type and evidence of regeneration. Mechanistic experiments demonstrated that BNIP3L modulates mitophagy, along with reticulophagy leading to altered nuclear calcium signaling. Collectively, these observations identify novel roles for BNIP3L coordinating selective autophagy, oxidative gene expression, and signaling pathways that maintain the muscle phenotype.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1544-1555"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2476872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial quality control is critical in muscle to ensure contractile and metabolic function. BNIP3L/Nix is a BCL2 member, a mitophagy receptor, and has been implicated in muscle atrophy. Human genome-wide association studies (GWAS) suggest altered BNIP3L expression could predispose to mitochondrial disease. To investigate BNIP3L function, we generated a muscle-specific knockout model. bnip3l knockout mice displayed a ragged-red fiber phenotype, along with accumulation of mitochondria and endo/sarcoplasmic reticulum with altered morphology. Intriguingly, bnip3l knockout mice were more insulin sensitive with a corresponding increase in glycogen-rich muscle fibers. Kinome and gene expression analyses revealed that bnip3l knockout impairs NFAT and MSTN (myostatin) signaling, with alterations in muscle fiber-type and evidence of regeneration. Mechanistic experiments demonstrated that BNIP3L modulates mitophagy, along with reticulophagy leading to altered nuclear calcium signaling. Collectively, these observations identify novel roles for BNIP3L coordinating selective autophagy, oxidative gene expression, and signaling pathways that maintain the muscle phenotype.

有丝分裂受体BNIP3L/Nix协调核钙信号调节肌肉表型。
线粒体质量控制是确保肌肉收缩和代谢功能的关键。BNIP3L/Nix是BCL2成员,是一种有丝分裂受体,与肌肉萎缩有关。人类全基因组关联研究(GWAS)表明,BNIP3L表达改变可能易患线粒体疾病。为了研究BNIP3L的功能,我们建立了一个肌肉特异性敲除模型。Bnip3l基因敲除小鼠表现出红色纤维的不规则表型,同时线粒体和内质/肌浆网的积累和形态改变。有趣的是,bnip3l基因敲除小鼠对胰岛素更敏感,富糖原肌纤维相应增加。Kinome和基因表达分析显示,敲除bnip3l会损害NFAT和MSTN(肌肉生长抑制素)信号,并改变肌肉纤维类型和再生证据。机制实验表明,BNIP3L调节有丝分裂和网状吞噬,导致核钙信号的改变。总的来说,这些观察结果确定了BNIP3L协调选择性自噬、氧化基因表达和维持肌肉表型的信号通路的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信