A Protocol for Body MRI/CT and Extraction of Imaging-Derived Phenotypes (IDPs) from the China Phenobank Project.

IF 3.7 Q2 GENETICS & HEREDITY
Phenomics (Cham, Switzerland) Pub Date : 2024-08-27 eCollection Date: 2024-12-01 DOI:10.1007/s43657-023-00141-x
Chengyan Wang, Shuo Wang, Sha Hua, Ruokun Li, Yan Li, Zhang Shi, Kai Feng, Lizhen Lan, Meng Liu, Xutong Kuang, Xueqin Xia, Shihai Zhao, Xiaodan Ye, Jianhua Jin, Jing Li, Bin Yang, Ming-Hua Zheng, Weibo Chen, Ying-Hua Chu, Juan Hu, Xiahai Zhuang, Xiaolong Qi, Wenjia Bai, He Wang, Jingchun Luo, Mei Tian
{"title":"A Protocol for Body MRI/CT and Extraction of Imaging-Derived Phenotypes (IDPs) from the China Phenobank Project.","authors":"Chengyan Wang, Shuo Wang, Sha Hua, Ruokun Li, Yan Li, Zhang Shi, Kai Feng, Lizhen Lan, Meng Liu, Xutong Kuang, Xueqin Xia, Shihai Zhao, Xiaodan Ye, Jianhua Jin, Jing Li, Bin Yang, Ming-Hua Zheng, Weibo Chen, Ying-Hua Chu, Juan Hu, Xiahai Zhuang, Xiaolong Qi, Wenjia Bai, He Wang, Jingchun Luo, Mei Tian","doi":"10.1007/s43657-023-00141-x","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, standard protocols for body imaging and corresponding image processing pipelines in population-based cohort studies are unavailable, limiting the applications of body imaging. Based on the China Phenobank Project (CHPP), the present study described a body imaging protocol for multiple organs, including cardiac structures, liver, spleen, pancreas, kidneys, lung, prostate, and uterus, and the corresponding image processing pipelines promoted its development. Briefly, the body imaging protocol comprised a 40-min cardiac magnetic resonance imaging (MRI) scan, a 5-min computed tomography (CT) scan, a 20-min abdominal MRI scan, and a 10-min pelvic MRI scan. The recommended image processing pipeline utilized deep learning segmentation models to facilitate the analysis of large amount of data. This study aimed to provide a reference for planning studies based on the CHPP platform.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"4 6","pages":"594-616"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phenomics (Cham, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43657-023-00141-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, standard protocols for body imaging and corresponding image processing pipelines in population-based cohort studies are unavailable, limiting the applications of body imaging. Based on the China Phenobank Project (CHPP), the present study described a body imaging protocol for multiple organs, including cardiac structures, liver, spleen, pancreas, kidneys, lung, prostate, and uterus, and the corresponding image processing pipelines promoted its development. Briefly, the body imaging protocol comprised a 40-min cardiac magnetic resonance imaging (MRI) scan, a 5-min computed tomography (CT) scan, a 20-min abdominal MRI scan, and a 10-min pelvic MRI scan. The recommended image processing pipeline utilized deep learning segmentation models to facilitate the analysis of large amount of data. This study aimed to provide a reference for planning studies based on the CHPP platform.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信