Quantile Regression for Longitudinal Functional Data with Application to Feed Intake of Lactating Sows.

IF 1.4 4区 数学 Q3 BIOLOGY
Maria Laura Battagliola, Helle Sørensen, Anders Tolver, Ana-Maria Staicu
{"title":"Quantile Regression for Longitudinal Functional Data with Application to Feed Intake of Lactating Sows.","authors":"Maria Laura Battagliola, Helle Sørensen, Anders Tolver, Ana-Maria Staicu","doi":"10.1007/s13253-024-00601-5","DOIUrl":null,"url":null,"abstract":"<p><p>This article focuses on the study of lactating sows, where the main interest is the influence of temperature, measured throughout the day, on the lower quantiles of the daily feed intake. We outline a model framework and estimation methodology for quantile regression in scenarios with longitudinal data and functional covariates. The quantile regression model uses a time-varying regression coefficient function to quantify the association between covariates and the quantile level of interest, and it includes subject-specific intercepts to incorporate within-subject dependence. Estimation relies on spline representations of the unknown coefficient functions and can be carried out with existing software. We introduce bootstrap procedures for bias adjustment and computation of standard errors. Analysis of the lactation data indicates, among others, that the influence of temperature increases during the lactation period.Supplementary materials accompanying this paper appear on-line.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13253-024-00601-5.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"30 1","pages":"211-230"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885350/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00601-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on the study of lactating sows, where the main interest is the influence of temperature, measured throughout the day, on the lower quantiles of the daily feed intake. We outline a model framework and estimation methodology for quantile regression in scenarios with longitudinal data and functional covariates. The quantile regression model uses a time-varying regression coefficient function to quantify the association between covariates and the quantile level of interest, and it includes subject-specific intercepts to incorporate within-subject dependence. Estimation relies on spline representations of the unknown coefficient functions and can be carried out with existing software. We introduce bootstrap procedures for bias adjustment and computation of standard errors. Analysis of the lactation data indicates, among others, that the influence of temperature increases during the lactation period.Supplementary materials accompanying this paper appear on-line.

Supplementary information: The online version contains supplementary material available at 10.1007/s13253-024-00601-5.

纵向函数数据的分位数回归及其在哺乳母猪采食量研究中的应用。
本文主要研究的是哺乳母猪,其主要兴趣是全天测量的温度对日采食量的低分位数的影响。我们概述了纵向数据和功能协变量情景中分位数回归的模型框架和估计方法。分位数回归模型使用时变回归系数函数来量化协变量与感兴趣的分位数水平之间的关联,并且它包括特定于主题的截距,以纳入主题内依赖性。估计依赖于未知系数函数的样条表示,可以用现有的软件进行。我们介绍了偏差调整和标准误差计算的自举程序。对哺乳数据的分析表明,除其他外,温度的影响在哺乳期间增加。本文附带的补充材料出现在网上。补充信息:在线版本包含补充资料,提供地址为10.1007/s13253-024-00601-5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
38
审稿时长
>12 weeks
期刊介绍: The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信