Maria Laura Battagliola, Helle Sørensen, Anders Tolver, Ana-Maria Staicu
{"title":"Quantile Regression for Longitudinal Functional Data with Application to Feed Intake of Lactating Sows.","authors":"Maria Laura Battagliola, Helle Sørensen, Anders Tolver, Ana-Maria Staicu","doi":"10.1007/s13253-024-00601-5","DOIUrl":null,"url":null,"abstract":"<p><p>This article focuses on the study of lactating sows, where the main interest is the influence of temperature, measured throughout the day, on the lower quantiles of the daily feed intake. We outline a model framework and estimation methodology for quantile regression in scenarios with longitudinal data and functional covariates. The quantile regression model uses a time-varying regression coefficient function to quantify the association between covariates and the quantile level of interest, and it includes subject-specific intercepts to incorporate within-subject dependence. Estimation relies on spline representations of the unknown coefficient functions and can be carried out with existing software. We introduce bootstrap procedures for bias adjustment and computation of standard errors. Analysis of the lactation data indicates, among others, that the influence of temperature increases during the lactation period.Supplementary materials accompanying this paper appear on-line.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13253-024-00601-5.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"30 1","pages":"211-230"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885350/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00601-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This article focuses on the study of lactating sows, where the main interest is the influence of temperature, measured throughout the day, on the lower quantiles of the daily feed intake. We outline a model framework and estimation methodology for quantile regression in scenarios with longitudinal data and functional covariates. The quantile regression model uses a time-varying regression coefficient function to quantify the association between covariates and the quantile level of interest, and it includes subject-specific intercepts to incorporate within-subject dependence. Estimation relies on spline representations of the unknown coefficient functions and can be carried out with existing software. We introduce bootstrap procedures for bias adjustment and computation of standard errors. Analysis of the lactation data indicates, among others, that the influence of temperature increases during the lactation period.Supplementary materials accompanying this paper appear on-line.
Supplementary information: The online version contains supplementary material available at 10.1007/s13253-024-00601-5.
期刊介绍:
The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.