scLTNN: an innovative tool for automatically visualizing single-cell trajectories.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf033
Cencan Xing, Zehua Zeng, Lei Hu, Jianing Kang, Shah Roshan, Yuanyan Xiong, Hongwu Du, Tongbiao Zhao
{"title":"scLTNN: an innovative tool for automatically visualizing single-cell trajectories.","authors":"Cencan Xing, Zehua Zeng, Lei Hu, Jianing Kang, Shah Roshan, Yuanyan Xiong, Hongwu Du, Tongbiao Zhao","doi":"10.1093/bioadv/vbaf033","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Cellular state identification and trajectory inference enable the computational simulation of cell fate dynamics using single-cell RNA sequencing data. However, existing methods for constructing cell fate trajectories demand substantial computational resources or prior knowledge of the developmental process.</p><p><strong>Results: </strong>Here, based on the discovery of the consistent expression distribution of highly variable genes, we create a new tool named scRNA-seq latent time neural network (scLTNN) by combining an artificial neural network with a distribution model. This innovative tool is pre-trained and capable of automatically inferring the origin and terminal state of cells, and accurately illustrating the developmental trajectory of cells with minimal use of computational resources and time. We implement scLTNN on human bone marrow cells, mouse pancreatic endocrine lineage, and axial mesoderm lineage of zebrafish embryo, accurately reconstructing their cell fate trajectories, respectively. Our scLTNN tool provides a straightforward and efficient method for illustrating cell fate trajectories, applicable across various species without the need for prior knowledge of the biological process.</p><p><strong>Availability and implementation: </strong>https://github.com/Starlitnightly/scLTNN.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf033"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Cellular state identification and trajectory inference enable the computational simulation of cell fate dynamics using single-cell RNA sequencing data. However, existing methods for constructing cell fate trajectories demand substantial computational resources or prior knowledge of the developmental process.

Results: Here, based on the discovery of the consistent expression distribution of highly variable genes, we create a new tool named scRNA-seq latent time neural network (scLTNN) by combining an artificial neural network with a distribution model. This innovative tool is pre-trained and capable of automatically inferring the origin and terminal state of cells, and accurately illustrating the developmental trajectory of cells with minimal use of computational resources and time. We implement scLTNN on human bone marrow cells, mouse pancreatic endocrine lineage, and axial mesoderm lineage of zebrafish embryo, accurately reconstructing their cell fate trajectories, respectively. Our scLTNN tool provides a straightforward and efficient method for illustrating cell fate trajectories, applicable across various species without the need for prior knowledge of the biological process.

Availability and implementation: https://github.com/Starlitnightly/scLTNN.

scLTNN:用于自动可视化单细胞轨迹的创新工具。
动机:细胞状态识别和轨迹推断使得使用单细胞RNA测序数据的细胞命运动力学的计算模拟成为可能。然而,现有的构建细胞命运轨迹的方法需要大量的计算资源或对发育过程的先验知识。结果:本文在发现高可变基因一致表达分布的基础上,将人工神经网络与分布模型相结合,构建了scRNA-seq潜伏时间神经网络(scLTNN)工具。这个创新的工具是预先训练的,能够自动推断细胞的起源和终结状态,并在最小的计算资源和时间的使用下准确地说明细胞的发育轨迹。我们在人骨髓细胞、小鼠胰腺内分泌谱系和斑马鱼胚胎轴向中胚层谱系上实施了scLTNN,分别准确地重建了它们的细胞命运轨迹。我们的scLTNN工具提供了一种简单有效的方法来说明细胞命运轨迹,适用于各种物种,而不需要事先了解生物过程。可用性和实现:https://github.com/Starlitnightly/scLTNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信