CoDNet: controlled diffusion network for structure-based drug design.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf031
Fahmi Kazi Md, Shahil Yasar Haque, Eashrat Jahan, Latin Chakma, Tamanna Shermin, Asif Uddin Ahmed, Salekul Islam, Swakkhar Shatabda, Riasat Azim
{"title":"CoDNet: controlled diffusion network for structure-based drug design.","authors":"Fahmi Kazi Md, Shahil Yasar Haque, Eashrat Jahan, Latin Chakma, Tamanna Shermin, Asif Uddin Ahmed, Salekul Islam, Swakkhar Shatabda, Riasat Azim","doi":"10.1093/bioadv/vbaf031","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Structure-based drug design (SBDD) holds promising potential to design ligands with high-binding affinity and rationalize their interaction with targets. By utilizing geometric knowledge of the three-dimensional (3D) structures of target binding sites, SBDD enhances the efficacy and selectivity of therapeutic agents by optimizing binding interactions at the molecular level. Here, we present CoDNet, a novel approach that combines the conditioning capabilities of ControlNet with the potency of the diffusion model to create generative frameworks for molecular compound design. This proposed method pioneers the application of ControlNet in diffusion model-based drug development. Its ability to generate drug-like compounds from 3D conformations is prominent due to its capability to bypass Open Babel post-processing and integrate bond details and molecular information.</p><p><strong>Results: </strong>For the gold standard QM9 dataset, CoDNet outperforms existing state-of-the-art methods with a validity rate of 99.02%. This competitive performance underscores the precision and efficacy of CoDNet's drug design, establishing it as a significant advancement with great potential for enhancing drug development initiatives.</p><p><strong>Availability and implementation: </strong>https://github.com/CoDNet1/EDM_Custom.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf031"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Structure-based drug design (SBDD) holds promising potential to design ligands with high-binding affinity and rationalize their interaction with targets. By utilizing geometric knowledge of the three-dimensional (3D) structures of target binding sites, SBDD enhances the efficacy and selectivity of therapeutic agents by optimizing binding interactions at the molecular level. Here, we present CoDNet, a novel approach that combines the conditioning capabilities of ControlNet with the potency of the diffusion model to create generative frameworks for molecular compound design. This proposed method pioneers the application of ControlNet in diffusion model-based drug development. Its ability to generate drug-like compounds from 3D conformations is prominent due to its capability to bypass Open Babel post-processing and integrate bond details and molecular information.

Results: For the gold standard QM9 dataset, CoDNet outperforms existing state-of-the-art methods with a validity rate of 99.02%. This competitive performance underscores the precision and efficacy of CoDNet's drug design, establishing it as a significant advancement with great potential for enhancing drug development initiatives.

Availability and implementation: https://github.com/CoDNet1/EDM_Custom.

CoDNet:基于结构的药物设计控制扩散网络。
动机:基于结构的药物设计(SBDD)在设计具有高结合亲和力的配体并使其与靶标的相互作用合理化方面具有很大的潜力。利用目标结合位点三维(3D)结构的几何知识,SBDD通过优化分子水平上的结合相互作用来提高治疗剂的疗效和选择性。在这里,我们提出了CoDNet,一种将ControlNet的调节能力与扩散模型的效力相结合的新方法,以创建分子化合物设计的生成框架。该方法开创了ControlNet在基于扩散模型的药物开发中的应用。它能够从3D构象中生成类似药物的化合物,因为它能够绕过Open Babel后处理,整合键细节和分子信息。结果:对于金标准QM9数据集,CoDNet的效度达到99.02%,优于现有的最先进的方法。这种具有竞争力的表现强调了CoDNet药物设计的准确性和有效性,使其成为加强药物开发计划的巨大潜力的重大进步。可用性和实现:https://github.com/CoDNet1/EDM_Custom。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信