Construction of a user-friendly software-defined networking management using a graph-based abstraction layer.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2674
Yufeng Jia, Jiadong Ren, Xianshan Li, Haitao He, Pengwei Zhang, Rong Li
{"title":"Construction of a user-friendly software-defined networking management using a graph-based abstraction layer.","authors":"Yufeng Jia, Jiadong Ren, Xianshan Li, Haitao He, Pengwei Zhang, Rong Li","doi":"10.7717/peerj-cs.2674","DOIUrl":null,"url":null,"abstract":"<p><p>The software-defined networking (SDN) paradigm relies on the decoupling of the control plane and data plane. Northbound interfaces enable the implementation of network services through logical centralised control. Suitable northbound interfaces and application-oriented abstractions are the core of the SDN ecosystem. This article presents an architecture to represent the network as a graph. The purpose of this architecture is to implement an abstraction of the SDN controller at the application plane. We abstract all network elements using a graph model, with the attributes of the elements as the attributes of the graph. This virtualized logical abstraction layer, which is not limited by the physical network, enables network administrators to schedule network resources directly in a global view. The feasibility of the presented graph abstraction was verified through experiments in topological display, dynamic route, access control, and data persistence. The performance of the shortest path in the graph-based abstraction layer and graph database proves the necessity of the graph abstraction layer. Empirical evidence demonstrates that the graph-based abstraction layer can facilitate network slicing, maintain a dependable depiction of the real network, streamline network administration and network application development, and provide a sophisticated abstraction that is easily understandable to network administrators.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2674"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2674","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The software-defined networking (SDN) paradigm relies on the decoupling of the control plane and data plane. Northbound interfaces enable the implementation of network services through logical centralised control. Suitable northbound interfaces and application-oriented abstractions are the core of the SDN ecosystem. This article presents an architecture to represent the network as a graph. The purpose of this architecture is to implement an abstraction of the SDN controller at the application plane. We abstract all network elements using a graph model, with the attributes of the elements as the attributes of the graph. This virtualized logical abstraction layer, which is not limited by the physical network, enables network administrators to schedule network resources directly in a global view. The feasibility of the presented graph abstraction was verified through experiments in topological display, dynamic route, access control, and data persistence. The performance of the shortest path in the graph-based abstraction layer and graph database proves the necessity of the graph abstraction layer. Empirical evidence demonstrates that the graph-based abstraction layer can facilitate network slicing, maintain a dependable depiction of the real network, streamline network administration and network application development, and provide a sophisticated abstraction that is easily understandable to network administrators.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信