BiLSTM-enhanced legal text extraction model using fuzzy logic and metaphor recognition.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-20 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2697
Jia Chen
{"title":"BiLSTM-enhanced legal text extraction model using fuzzy logic and metaphor recognition.","authors":"Jia Chen","doi":"10.7717/peerj-cs.2697","DOIUrl":null,"url":null,"abstract":"<p><p>The burgeoning field of natural language processing (NLP) has witnessed exponential growth, captivating researchers due to its diverse practical applications across industries. However, the intricate nature of legal texts poses unique challenges for conventional text extraction methods. To surmount these challenges, this article introduces a pioneering legal text extraction model rooted in fuzzy language processing and metaphor recognition, tailored for the domain of online environment governance. Central to this model is the utilization of a bidirectional long short-term memory (Bi-LSTM) network, adept at delineating illicit behaviors by establishing connections between legal provisions and judgments. Additionally, a self-attention module is integrated into the Bi-LSTM architecture, augmented by L2 regularization, to facilitate the efficient extraction of legal text information, thereby enabling the identification and classification of illegal content. This innovative approach effectively resolves the issue of legal text recognition. Experimental findings underscore the efficacy of the proposed method, achieving an impressive macro-F1 score of 0.8005, precision of 0.8047, and recall of 0.8014. Furthermore, the article delves into an analysis and discussion of the potential application prospects of the legal text extraction model, grounded in fuzzy language processing and metaphor recognition, within the realm of online environment governance.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2697"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2697","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The burgeoning field of natural language processing (NLP) has witnessed exponential growth, captivating researchers due to its diverse practical applications across industries. However, the intricate nature of legal texts poses unique challenges for conventional text extraction methods. To surmount these challenges, this article introduces a pioneering legal text extraction model rooted in fuzzy language processing and metaphor recognition, tailored for the domain of online environment governance. Central to this model is the utilization of a bidirectional long short-term memory (Bi-LSTM) network, adept at delineating illicit behaviors by establishing connections between legal provisions and judgments. Additionally, a self-attention module is integrated into the Bi-LSTM architecture, augmented by L2 regularization, to facilitate the efficient extraction of legal text information, thereby enabling the identification and classification of illegal content. This innovative approach effectively resolves the issue of legal text recognition. Experimental findings underscore the efficacy of the proposed method, achieving an impressive macro-F1 score of 0.8005, precision of 0.8047, and recall of 0.8014. Furthermore, the article delves into an analysis and discussion of the potential application prospects of the legal text extraction model, grounded in fuzzy language processing and metaphor recognition, within the realm of online environment governance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信