Autoregressive models for session-based recommendations using set expansion.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2734
Tianhao Yu, Xianghong Zhou, Xinrong Deng
{"title":"Autoregressive models for session-based recommendations using set expansion.","authors":"Tianhao Yu, Xianghong Zhou, Xinrong Deng","doi":"10.7717/peerj-cs.2734","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid growth of internet technologies, session-based recommendation systems have emerged as a key paradigm in delivering personalized recommendations by capturing users' dynamic and short-term preferences. Traditional methods predominantly rely on modeling the sequential order of user interactions, deep learning approaches like recurrent neural networks and Transformer architectures. However, these sequence-based models often struggle in scenarios where the order of interactions is ambiguous or unreliable, limiting their real-world applicability. To address this challenge, we propose a novel session-based recommendation model, Deep Set Session-based Recommendation (DSETRec), which approaches the problem from a set-based perspective, eliminating dependence on the interaction sequence. By conceptualizing session data as unordered sets, our model captures the coupling relationships and co-occurrence patterns between items, enhancing prediction accuracy in settings where sequential information is either unavailable or noisy. The model is implemented using a deep autoregressive framework that iteratively masks known elements within a session, predicting and reconstructing additional items based on set data characteristics. Extensive experiments on benchmark datasets show that DSETRec achieves outperforms state-of-the-art baselines. DSETRec achieves a 13.2% and 11.85% improvement in P@20 and MRR@20, respectively, over its sequence-based variant on Yoochoose. Additionally, DSETRec generalizes effectively across both further short and long sessions. These results highlight the robustness of the set-based approach in capturing unordered interaction patterns and adapting to diverse session lengths. This finding provides a foundation for developing more flexible and generalized session-based recommendation systems.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2734"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2734","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid growth of internet technologies, session-based recommendation systems have emerged as a key paradigm in delivering personalized recommendations by capturing users' dynamic and short-term preferences. Traditional methods predominantly rely on modeling the sequential order of user interactions, deep learning approaches like recurrent neural networks and Transformer architectures. However, these sequence-based models often struggle in scenarios where the order of interactions is ambiguous or unreliable, limiting their real-world applicability. To address this challenge, we propose a novel session-based recommendation model, Deep Set Session-based Recommendation (DSETRec), which approaches the problem from a set-based perspective, eliminating dependence on the interaction sequence. By conceptualizing session data as unordered sets, our model captures the coupling relationships and co-occurrence patterns between items, enhancing prediction accuracy in settings where sequential information is either unavailable or noisy. The model is implemented using a deep autoregressive framework that iteratively masks known elements within a session, predicting and reconstructing additional items based on set data characteristics. Extensive experiments on benchmark datasets show that DSETRec achieves outperforms state-of-the-art baselines. DSETRec achieves a 13.2% and 11.85% improvement in P@20 and MRR@20, respectively, over its sequence-based variant on Yoochoose. Additionally, DSETRec generalizes effectively across both further short and long sessions. These results highlight the robustness of the set-based approach in capturing unordered interaction patterns and adapting to diverse session lengths. This finding provides a foundation for developing more flexible and generalized session-based recommendation systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信