Automated essay scoring with SBERT embeddings and LSTM-Attention networks.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2634
Yuzhe Nie
{"title":"Automated essay scoring with SBERT embeddings and LSTM-Attention networks.","authors":"Yuzhe Nie","doi":"10.7717/peerj-cs.2634","DOIUrl":null,"url":null,"abstract":"<p><p>Automated essay scoring (AES) is essential in the field of educational technology, providing rapid and accurate evaluations of student writing. This study presents an innovative AES method that integrates Sentence-BERT (SBERT) with Long Short-Term Memory (LSTM) networks and attention mechanisms to improve the scoring process. SBERT generates embedding vectors for each essay, which are subsequently analyzed using a bidirectional LSTM (BiLSTM) to learn the features of these embedding vectors. An attention layer is introduced to enable the system to prioritize the most significant components of the essay. Evaluated using a benchmark dataset, our approach shows significant improvements in scoring accuracy, highlighting its ability to improve the reliability and efficiency of automated assessment systems.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2634"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2634","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automated essay scoring (AES) is essential in the field of educational technology, providing rapid and accurate evaluations of student writing. This study presents an innovative AES method that integrates Sentence-BERT (SBERT) with Long Short-Term Memory (LSTM) networks and attention mechanisms to improve the scoring process. SBERT generates embedding vectors for each essay, which are subsequently analyzed using a bidirectional LSTM (BiLSTM) to learn the features of these embedding vectors. An attention layer is introduced to enable the system to prioritize the most significant components of the essay. Evaluated using a benchmark dataset, our approach shows significant improvements in scoring accuracy, highlighting its ability to improve the reliability and efficiency of automated assessment systems.

自动作文评分与SBERT嵌入和lstm -注意力网络。
自动作文评分(AES)在教育技术领域是必不可少的,为学生的写作提供快速和准确的评估。本研究提出了一种创新的AES方法,该方法将句子bert (SBERT)与长短期记忆(LSTM)网络和注意机制相结合,以改进评分过程。SBERT为每篇文章生成嵌入向量,随后使用双向LSTM (BiLSTM)对这些嵌入向量进行分析,以学习这些嵌入向量的特征。引入一个注意力层,使系统能够优先考虑文章中最重要的组成部分。使用基准数据集进行评估,我们的方法在评分准确性方面显示出显着的改进,突出了其提高自动化评估系统可靠性和效率的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信