{"title":"Blockchain and explainable-AI integrated system for Polycystic Ovary Syndrome (PCOS) detection.","authors":"Gowthami Jaganathan, Shanthi Natesan","doi":"10.7717/peerj-cs.2702","DOIUrl":null,"url":null,"abstract":"<p><p>In the modern era of digitalization, integration with blockchain and machine learning (ML) technologies is most important for improving applications in healthcare management and secure prediction analysis of health data. This research aims to develop a novel methodology for securely storing patient medical data and analyzing it for PCOS prediction. The main goals are to leverage Hyperledger Fabric for immutable, private data and to integrate Explainable Artificial Intelligence (XAI) techniques to enhance transparency in decision-making. The innovation of this study is the unique integration of blockchain technology with ML and XAI, solving critical issues of data security and model interpretability in healthcare. With the Caliper tool, the Hyperledger Fabric blockchain's performance is evaluated and enhanced. The suggested Explainable AI-based blockchain system for Polycystic Ovary Syndrome detection (EAIBS-PCOS) system demonstrates outstanding performance and records 98% accuracy, 100% precision, 98.04% recall, and a resultant F1-score of 99.01%. Such quantitative measures ensure the success of the proposed methodology in delivering dependable and intelligible predictions for PCOS diagnosis, therefore making a great addition to the literature while serving as a solid solution for healthcare applications in the near future.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2702"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2702","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the modern era of digitalization, integration with blockchain and machine learning (ML) technologies is most important for improving applications in healthcare management and secure prediction analysis of health data. This research aims to develop a novel methodology for securely storing patient medical data and analyzing it for PCOS prediction. The main goals are to leverage Hyperledger Fabric for immutable, private data and to integrate Explainable Artificial Intelligence (XAI) techniques to enhance transparency in decision-making. The innovation of this study is the unique integration of blockchain technology with ML and XAI, solving critical issues of data security and model interpretability in healthcare. With the Caliper tool, the Hyperledger Fabric blockchain's performance is evaluated and enhanced. The suggested Explainable AI-based blockchain system for Polycystic Ovary Syndrome detection (EAIBS-PCOS) system demonstrates outstanding performance and records 98% accuracy, 100% precision, 98.04% recall, and a resultant F1-score of 99.01%. Such quantitative measures ensure the success of the proposed methodology in delivering dependable and intelligible predictions for PCOS diagnosis, therefore making a great addition to the literature while serving as a solid solution for healthcare applications in the near future.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.