{"title":"Emergence of food webs with a multi-trophic hierarchical structure driven by nonlinear trait-matching.","authors":"Christophe Laplanche, Benjamin Pey, Robin Aguilée","doi":"10.1016/j.jtbi.2025.112091","DOIUrl":null,"url":null,"abstract":"<p><p>Food webs are a central subject in community ecology, because consumption supports the flow of matter through the system, which is at the base of many of its functions. Identifying the mechanisms that are at the origin of food web structure is useful, e.g., for restoration purposes. We investigated the extent to which trait-matching, which contributes to defining the strength of trophic interactions, can cause the emergence of food webs with a non-trivial, multi-trophic, hierarchical structure. We compared for that purpose the structural properties of food webs simulated by four food web model variants, depending whether trait-matching was linear or nonlinear and whether population dynamics and evolution were accounted for (dynamical model) or not (static model). Nonlinear trait-matching can restrict interactions in phenotypic space so as to obtain localized interactions (i.e., each species interact with a small subset of species), which is a key element for food web formation. In the static case, nonlinear trait-matching allowed for the emergence of food webs, at a relatively low connectance as with random graphs. In the dynamical case, nonlinear trait-matching combined with population dynamics and evolution allowed for the formation of groups of phenotypically close species, resulting in food webs with a multi-trophic, hierarchical structure.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112091"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2025.112091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food webs are a central subject in community ecology, because consumption supports the flow of matter through the system, which is at the base of many of its functions. Identifying the mechanisms that are at the origin of food web structure is useful, e.g., for restoration purposes. We investigated the extent to which trait-matching, which contributes to defining the strength of trophic interactions, can cause the emergence of food webs with a non-trivial, multi-trophic, hierarchical structure. We compared for that purpose the structural properties of food webs simulated by four food web model variants, depending whether trait-matching was linear or nonlinear and whether population dynamics and evolution were accounted for (dynamical model) or not (static model). Nonlinear trait-matching can restrict interactions in phenotypic space so as to obtain localized interactions (i.e., each species interact with a small subset of species), which is a key element for food web formation. In the static case, nonlinear trait-matching allowed for the emergence of food webs, at a relatively low connectance as with random graphs. In the dynamical case, nonlinear trait-matching combined with population dynamics and evolution allowed for the formation of groups of phenotypically close species, resulting in food webs with a multi-trophic, hierarchical structure.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.